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Eusociality, where largely unreproductive offspring help their mothers
reproduce, is a major form of social organization. An increasingly documen-
ted feature of eusociality is that mothers induce their offspring to help by
means of hormones, pheromones or behavioural displays, with evidence
often indicating that offspring help voluntarily. The co-occurrence of
maternal influence and offspring voluntary help may be explained by
what we call the converted helping hypothesis, whereby maternally
manipulated helping subsequently becomes voluntary. Such hypothesis
requires that parent-offspring conflict is eventually dissolved—for instance,
if the benefit of helping increases sufficiently over evolutionary time. We
show that help provided by maternally manipulated offspring can enable
the mother to sufficiently increase her fertility to transform parent-offspring
conflict into parent-offspring agreement. This conflict-dissolution mechan-
ism requires that helpers alleviate maternal life-history trade-offs, and
results in reproductive division of labour, high queen fertility and honest
queen signalling suppressing worker reproduction—thus exceptionally reco-
vering diverse features of eusociality. As such trade-off alleviation seemingly
holds widely across eusocial taxa, this mechanism offers a potentially gen-
eral explanation for the origin of eusociality, the prevalence of maternal
influence, and the offspring’s willingness to help. Overall, our results explain
how a major evolutionary transition can happen from ancestral conflict.

1. Introduction
A fewmajor evolutionary transitions in individuality have had vast effects on the
history of life. Examples include transitions fromprokaryotes to eukaryotes, from
unicellularity to multicellularity, and from solitary life to eusociality. A major
transition is said to occur when independently replicating units evolve into
groups of entities that can only replicate as part of the group and that show a
relative lack of within-group conflict [1–3]. A transition is envisaged to involve
the formation of a cooperative group and its transformation into a cohesive
collective [2,3]. These steps are hypothesized to occur through the evolution
of cooperation, division of labour, communication, mutual dependence, and
negligible within-group conflict, leading to a higher-level individual [3]. This
scheme poses the question of how its various features can arise.

The transition to eusociality has been extensively studied, partly because it
has occurred relatively recently. Eusociality is commonly defined as involving
groups with reproductive division of labour, overlapping generations and coop-
erative work [4]. Additionally, an increasingly documented feature of
eusociality is that mothers exert a substantial influence—via various proximate
mechanisms—on whether offspring express helper phenotypes. Examples
include hymenopteran queen pheromones suppressing worker reproduction
[5], termite queen pheromones inhibiting differentiation of new queens [6],
naked-mole rat workers becoming more responsive to pup calls after copro-
phagy of queen’s faeces containing oestradiol [7] and queen presence
suppressing gonadal development of females in eusocial shrimp [8]. This pat-
tern suggests that explanations for the transition to eusociality should also
account for the prevalence of maternal influence on helpers at the nest.
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Two classic hypotheses for the origin of eusociality offer
different explanations for the prevalence of maternal influ-
ence. On the one hand, the voluntary helping hypothesis
proposes that helping arises in the evolutionary interests of
helpers, in the sense that helping is favoured when helpers
have unconstrained control of their helping behaviour [9].
According to this hypothesis, helping evolves in simple
models if B/C > 1/r, where B is the benefit given by helping,
C is the cost paid for helping and r is the relatedness of helper
towards recipient. In this view, maternal influence on
workers would arise as a regulatory mechanism after helping
evolves, and the prevalence of such maternal influence would
be a consequence of the loss of eusociality without it. On the
other hand, the maternal manipulation hypothesis proposes that
helping arises in the evolutionary interests of mothers against
the evolutionary interests of helpers—that is, there is a
parent-offspring conflict over helping [10–12]. In this case,
helping evolves if B/C > 1, which is easier to satisfy than
the condition for voluntary helping, as long as r < 1 [13].
Although, by definition, the maternal manipulation hypoth-
esis would account for the prevalence of maternal
influence, this hypothesis is refuted by increasing evidence
suggesting that it is often in the evolutionary interests of off-
spring to help [14,15], thus supporting the voluntary helping
hypothesis.

A third alternative hypothesis—that we term the converted
helping hypothesis—proposes that helping initially arises from
maternal manipulation but then becomes voluntary [16,17].
This hypothesis can bring together advantages of both the
voluntary helping and maternal manipulation hypotheses
without bringing in their disadvantages. First, because it is
initially maternally manipulated, helping originates under
the easier condition B/C > 1 and would be associated with
maternal influence. Second, because converted helping is
voluntary in the end, the hypothesis is also consistent with
evidence that offspring help voluntarily. By considering
that manipulated helping becomes voluntary, the converted
helping hypothesis requires that there is a switch from con-
flict to agreement, that is, that conflict dissolution occurs

(figure 1a,b). Hence, it is of substantial interest to identify
mechanisms that dissolve conflict and that would give the
converted helping hypothesis a basis.

Here, we report a conflict-dissolution mechanism that
yields eusociality together with its hallmarks of maternal
influence on offspring helping phenotype, offspring volun-
tary helping and high maternal fertility. We term this
particular mechanism conflict dissolution via maternal reproduc-
tive specialization, whereby (i) the mother manipulates
offspring to become helpers (i.e. against their inclusive-fitness
interests); (ii) while offspring evolve resistance to manipu-
lation, the mother uses available help to become more
fertile; and (iii) increased maternal fertility increases the
benefit of helping to the point of rendering helping voluntary
(i.e. in the inclusive fitness interest of helpers). The key
requirement for this mechanism to work is that helpers alle-
viate the total per cent life-history trade-off limiting
maternal fertility in the absence of help—a requirement that
available evidence suggests may hold widely across eusocial
taxa. We show how conflict dissolution via maternal repro-
ductive specialization operates by means of both a heuristic
game theory model and a demographically explicit
evolutionary model.

2. Model and results
(a) Sequential game
First, we use a sequential game to show that offspring resist-
ance can prevent maternal manipulation from yielding
helping. Consider a game between a mother (M) and a
female offspring (O) (figure 1c). First, M chooses between
either influencing O or not. Second, if M influences O, then
O chooses between either resisting the influence or not. If O
does not resist, she helps M produce an extra number B of
daughters, at a cost C to herself. IfM is related to each daugh-
ter by rM, and if O is related to each sister by r, thenM gets an
‘inclusive-fitness pay-off’ of rMB− rMC while O gets rB−C.
Otherwise, if M does not influence or if O resists, O does
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Figure 1. Conflict dissolution. (a,b) Helping is (i) disfavoured by mother and offspring if the benefit-cost ratio B/C satisfies B/C < 1/ρM (no helping zone);
(ii) favoured by mother and offspring if B/C > 1/ρO (agreement zone); or (iii) favoured by the mother but disfavoured by offspring if 1/ρM < B/C < 1/ρO (conflict
zone). Conflict dissolution occurs when (a) B/C starts in the conflict zone but (b) ends in the agreement zone. Helping is favoured by actors A when ρA B− C > 0
(a Hamilton’s rule; [9]), where C is the cost to helpers, B is the benefit to help recipients and ρA is the relative reproductive worth, for actors A, of recipients relative
to helpers (a reproductive-value weighted measure of relatedness; if all offspring are female, then ρM = rM/rM = 1 and ρO = r/1 = r, where rM and r are the
relatedness of a female to a daughter and a sister, respectively; see the electronic supplementary material, appendix, S3). (c,d) Sequential games modelling conflict
and conflict dissolution via maternal reproductive specialization. (c) Without specialization, conflict yields equilibria with no helping (shaded); (d ) with specialization,
conflict is dissolved if B+/C > 1/ρO, yielding a unique equilibrium under agreement (shaded). K is the cost of specialization without helpers. (Online version in
colour.)
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not pay any cost and no extra daughters are produced, yield-
ing pay-offs of zero to both M and O. Under conflict (1 < B/
C < 1/r), maternal influence constitutes manipulation, selec-
tion favours resistance and manipulation does not yield
helping: the game has two subgame perfect equilibria, one
with resistance and the other without influence.

Let us extend this game to show that reproductive special-
ization allows maternal influence to yield helping despite
possible resistance. Now, after O moves, M can choose
between specializing into reproduction or not (figure 1d ). If
O resists, M pays a cost K for exerting more reproductive
effort owing to a life-history trade-off. If O does not resist,
M produces an extra number of daughters B+ at no cost pro-
vided that O alleviates the trade-off faced by M. Importantly,
if helping and specialization are synergistic enough that B+/
C > 1/r, then there is agreement with specialization although
there is conflict without it. Thus, influence and specialization
yield helping: the game has a unique subgame perfect
equilibrium with influence, specialization and no resistance.
This game suggests that if mothers can use offspring help
to increase their fertility sufficiently, the underlying parent-
offspring conflict can be dissolved.

(b) Evolutionary model
We now formulate an evolutionary model to show that the
evolution of maternal reproductive specialization can
increase the benefit of helping to a point where conflict is dis-
solved. The model is age-, sex- and genotype-structured with
explicit population and mutant-invasion dynamics [18,19],
which allows us to derive rather than assume inclusive-
fitness pay-offs (the model is fully described in the electronic
supplementary material, appendix, S1). The genetic system
is diploid or haplodiploid, and either both sexes or only
females help; this covers the spectrum of known eusocial
taxa (electronic supplementary material, appendix, figure
S1; [20]). We consider a large population with overlapping
generations, a fixed number of nesting sites, and a monog-
amous life cycle with two offspring broods, as follows.
(i) Young parents produce f1 first-brood offspring and with
probability sM survive to old age to produce f2 second-
brood offspring. (ii) Each first-brood offspring of the helper
sex becomes a helper with probability p or disperses with
probability 1− p; the number of helpers h at the nest is
hence proportional to p. All second-brood offspring disperse.
(iii) Dispersing first-brood offspring (resp. second-brood off-
spring) survive dispersal with probability s1 (resp. s2).
Surviving individuals mate singly at random and start a
nest if nesting sites are available (electronic supplementary
material, appendix, figure S2). We assume vital rates are
such that (i) f2 increases with maternal reproductive effort z
(e.g. number of ovarioles), (ii) there is a trade-off between sur-
vival and fertility, so that sM or s2 decreases with f2, and (iii)
helpers increase mother or second-brood survival, so that sM
or s2 increases with h. A couple’s expected number of repro-
ductive first-brood (resp. second-brood) offspring is given by
the couple’s early productivity Π1 = ( f1− h)s1 (resp. late pro-
ductivity Π2 = sMf2s2). We analyse the coevolutionary
dynamics of offspring helping probability p and maternal
reproductive effort z. We let p be under maternal, offspring,
or shared control. Under shared control, p is a joint pheno-
type [21] that increases with maternal influence x (e.g.
pheromone production) and decreases with offspring

resistance y (e.g. receptor antagonist production). Reproduc-
tive effort z is under maternal control. For simplicity, we
assume that maternal influence and offspring resistance are
costless. For the inclusive fitness interpretation of our results,
we distinguish between different sets of individuals in a focal
nest. In particular, we denote by M the singleton whose only
member is the mother, by Oaℓ the set of sex-ℓ offspring pro-
duced in brood a (with a∈ {1, 2}, and ‘ [ {C, F}), and by Oa

the set of all a-th brood offspring (i.e. both male and female).
Furthermore, we let O≡O1 if both sexes help, and O ; O1C if
only females help.

(c) Inclusive fitness effects
We find that, in agreement with inclusive fitness theory, each
evolving trait ζ (where ζ∈ {x, y, z} for shared control) is
favoured by selection if and only if its inclusive fitness effect
Hz is positive (see the electronic supplementary material,
appendix, S2 and S3). More specifically, the selection gradients
quantifying directional selection acting on each trait are

Sx / @p
@x

(rMB� C), (2:1a)

Sy / @p
@y

(rOB� C), (2:1b)

Sz / @P2

@ f2
, (2:1c)

where the inclusive fitness effect of helping from the perspec-
tive of actors A is HA

p / rAB� C with A =M when helping is
under maternal control, and A =O when it is under offspring
control. Here, C =−∂Π1/∂h = s1 is the marginal cost of helping,
B = ∂Π2/∂h is the marginal benefit of helping, and ρA is what
we term the relative reproductive worth for a random actor in
set A of a random candidate recipient of help in setO2 relative
to a random candidate helper in setO. Our measure of relative
reproductive worth generalizes Hamilton’s life-for-life relat-
edness [22] to allow for helpers and recipients of both sexes.
It depends on the relatedness of actors towards candidate reci-
pients of help, the sex-specific reproductive values of such
recipients, and the stable sex distribution of the parents of can-
didate helpers (electronic supplementary material, appendix,
S3).

(d) Conflict dissolution
We model the evolutionary dynamics after the canonical
equation of adaptive dynamics [23–25] with selection gradi-
ents given by equation (2.1). Numerical solutions of the
evolutionary model show that conflict dissolution via
maternal reproductive specialization can occur. If maternal
influence x and offspring resistance y coevolve under conflict
but reproductive effort z cannot evolve (i.e. there is no genetic
variation for z), resistance may win the ensuing arms race and
eliminate helping in the long run (figure 2a–e). This matches
the standard expectation when maternal influence is carried
out with pheromones [26–28]. Alternatively, if reproductive
effort coevolves with influence and resistance, the benefit-
cost ratio can move out of conflict and into the agreement
zone (figure 2f–j ). In this case, the arms race vanishes as
manipulated helping becomes voluntary. The final outcome
is eusociality where (i) helpers are maternally induced to
help and not favoured to resist, and (ii) the mother has
become highly fertile and reliant on helpers for her own or
her offspring’s survival. Moreover, ancestral manipulation
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becomes an honest signal [29]: the resulting maternal influ-
ence alters the recipient’s phenotype in the recipient’s
interest (i.e. helpers are induced to help, and they ‘want’ to
help); the signaller evolved to produce that effect (i.e.
maternal influence evolved to induce helping); and the recipi-
ent evolved to attend the signal (i.e. offspring evolved lack of
resistance to influence).

(e) Trade-off alleviation
We now show that conflict dissolution via maternal repro-
ductive specialization requires that helpers alleviate the
total per cent trade-off limiting maternal fertility. Conflict
occurs when the mother favours helping (i.e. HM

p . 0)
while offspring disfavour helping (i.e. HO

p , 0). Conflict dis-
solves if there is eventual agreement (i.e. HM

p . 0 and
HO

p . 0 in the end). Hence, for conflict dissolution to occur
it is necessary that the inclusive fitness effect HO

p for helping
under offspring control increases with evolutionary time τ
and changes sign from negative to positive, namely that

dHO
p

dt
. 0 for all t [ [t1, t2] and (persuasion condition)

HO
p ¼ 0 for some t [ (t1, t2) (conversion condition)

hold for some evolutionary time interval [τ1, τ2]. By the chain
rule, the persuasion condition is equivalent to (@HO

p =@p)

( dp=dt)þ (@HO
p =@z)( dz=dt) . 0 for all τ∈ [τ1, τ2]. Motivated

by this, we say that conflict dissolution via maternal repro-
ductive specialization occurs when (@HO

p =@z)( dz=dt) . 0
for all τ∈ [τ1, τ2]. Thus, conflict dissolution via maternal
reproductive specialization requires that there is helping-fer-
tility synergy (i.e. @HO

p =@z . 0; [30]) as reproductive effort
increases over evolutionary time.

Helping-fertility synergy at an optimal fertility f2�

(implicitly given by @P2=@ f2j f2¼ f2� ¼ 0) is equivalent to the
four following statements (electronic supplementary material,
appendix, S5). First, the benefit-cost ratio, B/C, increases
with late fertility at an optimal late fertility f�2, so
@(B=C)=@ f2j f2¼ f2� . 0. Second, optimal late fertility f�2 increases
with the number of helpers, so d f2�=dh . 0. Third, the late
productivity function Π2 is supermodular, meaning that help-
ing and fertility act as strategic complements, so that
(@2P2=@ f2@h) f2¼ f2� . 0 holds. Fourth, helpers alleviate the
total per cent trade-off at optimal late fertility, so that

@

@h
[e f2 (sM)þ e f2 (s2)]

� �
f2¼ f2�

. 0 (alleviation condition)

holds, where

eX(Y) ¼ X
Y
@Y
@X

¼ @ lnY
@ lnX

(2:2)
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Figure 2. Conflict dissolution via maternal reproductive specialization (evolutionary model). (a–e) Coevolution of maternal influence x and offspring resistance y
when maternal reproductive effort z—and hence late fertility f2—cannot evolve (i.e. the genetic variance of z, Gz, is zero). (a) Phase portrait showing the evolution
of the helping probability p under constant late fertility f2. Starting from conflict, helping evolves temporarily but is eventually lost owing to the evolution of
resistance (start and end points are given by the circle; the pink trajectory ends in the conflict zone). (b) Stream plot showing the coevolution of maternal influence
and offspring resistance. The thick line shows the trajectory for the initial conditions used. (c–e) Time series of: (c) the evolving traits; (d ) the resulting helping
probability p, benefit-cost ratio B/C, and the Hamilton’s rule (HR) threshold from the mother and offspring perspective; and (e) the vital rates sM, f2 and sM with zero
helpers. ( f–j) Analogous plots but now z can evolve as the mother chooses it optimally for the number of helpers she has (i.e. as if Gz→∞). In this case, fertility
evolves along the optimal path, f �2 . ( f ) Phase portrait showing the coevolution of the helping probability p and optimal late fertility f

�
2 . Starting from conflict,

helping emerges and is maintained through the evolution of z yielding agreement (end point is given by the circle; the yellow trajectory ends in the agreement
zone). (g) Stream plot showing the coevolution of maternal influence and offspring resistance. The thick line shows the trajectory for the initial conditions used; such
a trajectory starts at conflict but converges to agreement. (h) Resistance reversal. (i) B/C evolves and the Hamilton’s rule threshold from the offspring perspective is
crossed. ( j ) The mother becomes highly fertile and reliant on helpers for her own survival. The genetic system is diploid, both sexes help, and helping is under
shared control with sequential determination of the joint helping phenotype. Here, the life-history trade-off is between maternal survival sM and late fertility f2, as
illustrated in figure 3. Second-brood offspring survival s2 is constant. The remaining details of the functional forms and parameter values used are given in the
electronic supplementary material, appendix, S8. (Online version in colour.)
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is the elasticity of Y with respect to X (i.e. the per cent change
in Y caused by a marginal per cent increase inX [31]). The elas-
ticities e f2 (sM) and e f2 (s2) measure the assumed per cent life-
history trade-offs (i.e. that a normalized increase in late fertility
causes a normalized decrease in either maternal or offspring
survival) and consequently satisfy e f2 (sM) , 0 or e f2 (s2) , 0.
The quantity e f2 (sM)þ e f2 (s2) , 0 thus measures the total per
cent life-history trade-off, with the alleviation condition stating
that such trade-off must be less negative with marginally more
helpers (figure 3). We conclude that a key requirement for con-
flict dissolution via maternal reproductive specialization is that
the total per cent life-history trade-off faced by mothers with
an optimal fertility is less severe with marginally more helpers.

( f ) Promoters of conflict dissolution
Conflict dissolution depends on the relative evolutionary
speeds of the coevolving traits, as speeds determine the
size of the basin of attraction towards agreement [16]. Con-
flict dissolution is thus promoted by higher genetic
variance of maternally controlled traits and lower genetic
variance of offspring-controlled traits (figure 4a,b). The
power of mother and offspring on determining the joint phe-
notype [32] also affects the evolutionary speed (but not the
direction of selection) of influence and resistance. Hence, con-
flict dissolution is promoted by high maternal power (figure
4c). Finally, the evolutionary speed depends on whether
mother and offspring contest the joint phenotype simul-
taneously (e.g. behaviourally, through aggression [33,34]) or
sequentially (e.g. physiologically, where the mother alters
offspring development through nutrition or hormones
transferred before eclosion or birth [35,36]). Conflict dissol-
ution is promoted by simultaneous contests if resistance is
small (figure 4d; see the electronic supplementary material,
appendix, S7).

3. Discussion
We have shown that maternal reproductive specialization can
dissolve conflict and yield a major transition. Conflict dissol-
ution occurs here because of the evolutionary synergy
between offspring help and maternal fertility, whereby the
benefit of helping increases to a point that the original
parent-offspring conflict shifts to parent-offspring agreement.
This provides a widely relevant mechanism for the converted
helping hypothesis to explain the origin of eusociality and
various hallmarks thereof. As we now discuss, this hypoth-
esis, where ancestrally manipulated helping eventually
becomes voluntary, brings together advantages of both the
voluntary helping [9] and maternal manipulation [10,11]
hypotheses without bringing in their disadvantages.

The converted helping hypothesis brings advantages in
that eusociality arises under less stringent conditions than
under voluntary helping, while being supported by the avail-
able evidence supporting both voluntary helping and
maternal manipulation. First, by being initially manipulated,
converted helping requires smaller benefit-cost ratios than
voluntary helping at the start of the evolutionary process.
Second, converted helping co-occurs with maternal influence.
Thus, the converted helping hypothesis is consistent with the
widespread maternal influence observed across eusocial taxa.
By contrast, widespread maternal influence is not necessarily
expected from ancestral voluntary helping. Third, by being

eventually voluntary, converted helping requires high related-
ness of helpers towards help recipients. Hence, the converted
helping hypothesis is consistent with evidence that eusociality
originated exclusively under lifetime monogamy [14].

In turn, the converted helping hypothesis does not bring
disadvantages in that it is not refuted by the available
evidence of voluntary helping refuting the maternal manipu-
lation hypothesis. First, by turning manipulated helping into
voluntary helping, conflict dissolution eliminates selection
for resistance that would prevent the evolution of eusociality
[26]. Second, because conflict dissolution turns manipulation
into honest signalling, the converted helping hypothesis is
consistent with evidence in extant taxa that queen phero-
mones act as honest signals rather than as manipulative
control [5,15,26,28].

Although converted helping initially requires smaller
benefit-cost ratios than voluntary helping, conflict dissolution
is not necessarily straightforward. Indeed, conflict dissolution
has additional conditions other than Hamilton’s rule (e.g. the
persuasion condition and conversion condition) and occurs
under restricted parameter combinations (e.g. figure 4). This
is in principle consistent with the patchy taxonomic distri-
bution of eusociality, including the absence of eusociality in
vast numbers of species with high intra-colony relatedness [37].

We distinguish conflict dissolution, which is the switch
from conflict to agreement, from conflict resolution, which is
the outcome of conflict even if conflict persists [38]. Conflict
resolution is a static concept where it is enough to study evol-
utionary equilibria (e.g. evolutionarily stable strategies),
whereas conflict dissolution is an out-of-equilibrium concept
that requires an explicit consideration of the evolutionary
dynamics. Thus, to establish that conflict dissolution has
occurred, it is not sufficient to know that a population is at
an agreement equilibrium, as the population may or may
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not have arrived to the equilibrium from the conflict zone.
Instead, one must consider initial conditions and the basins
of attraction to agreement. For instance, worker reproduction
in Melipona bees has been found to match the predicted opti-
mum from the worker’s perspective rather than the queen’s
perspective (fig. 2 of [39] and fig. 4 of [28]). Such match
between conflict resolution models and empirical data
suggests that helping is voluntary at present, but it is insuffi-
cient to rule out that helping was originally manipulated and
only later became voluntary. In this sense, conflict dissolution
depends on the evolutionary history, whereas conflict
resolution is independent of it.

A key requirement of conflict dissolution via maternal
reproductive specialization is that helpers alleviate the total
per cent life-history trade-off limiting maternal fertility (i.e.
the alleviation condition). This may hold widely as suggested
by available empirical evidence. Indeed, data from eusocial
bees, wasps and ants [40–42], as well as from cooperatively
breeding mammals [43,44] and birds [45], indicate that the
fertility of the breeding female often increases with the
number of helpers. If such fertility is approximately optimal
given the number of helpers available, these common empiri-
cal observations indicate that the alleviation condition may
hold widely across eusocial taxa.

In another front, empirical inference of conflict dissol-
ution may use its dependence on evolutionary history. In
particular, conflict relics may be indicative of conflict dissol-
ution [17]. For instance, the complex chemical composition
of honeybee queen mandibular pheromone (QMP; which
inhibits worker reproduction) suggests that it resulted from
an arms race [46] that seemingly halted because (i) worker
reproduction follows the workers’ inclusive fitness interests
[28,39], (ii) QMP behaves as an honest signal [15,47], and
(iii) QMP composition is similar among related species
[28,48]. By stemming from a halted arms race, QMP may
be a conflict relic suggesting that conflict dissolution
occurred.

Our mathematical model is related to previous models
showing how the coevolutionary dynamics of multiple
traits can make manipulated helping become voluntary

[16,17] (see also [49–51] for similar ideas in other systems).
These models show that maternal manipulation can trigger
not only the evolution of helper resistance but also the evol-
ution of helper efficiency [16] or of the reduction of maternal
care [17]. The evolution of these traits can make the benefit-
cost ratio increase sufficiently over evolutionary time for
voluntary helping to become favoured. In a similar vein,
we have shown that manipulation can trigger the evolution
of maternal reproductive specialization, which can make
the benefit increase sufficiently for conflict to shift to agree-
ment. While our mechanism requires the alleviation
condition, which empirical evidence suggests may hold
widely [40–45], available empirical evidence remains see-
mingly less supportive of other previously reported
conflict-dissolution mechanisms [16,17]. Specifically, those
mechanisms did not yield high maternal fertility and had
more restrictive requirements, namely costly helping ineffi-
ciency [16] or better help use by maternally neglected
offspring [17].

Eusociality through conflict dissolution via maternal
reproductive specialization contains all the ingredients of a
major transition [3]. First, cooperation evolves, specifically
under relatively lax conditions because it is triggered by
maternal manipulation. Second, division of labour evolves
as the mother specializes in reproduction while offspring
help in tasks such as colony defence, brood care and foraging.
Third, honest communication evolves owing to conflict dis-
solution as manipulation becomes honest signalling. Fourth,
mutual dependence evolves as the queen becomes unable
to survive or reproduce without helpers (figure 2j ). Fifth,
negligible within-group conflict evolves because dissolution
eliminates the parent-offspring conflict. Yet, our model did
not let adults reproduce asexually in their natal nest. Such a
conflict might persist in haplodiploids but can be removed
by subsequent evolution of multiple mating and worker
policing (as reviewed in [3]).

Conflict dissolution theory suggests that manipulation
might play a role in explaining the empirically observed rel-
evance of how groups are formed. Major transitions are
envisaged to involve two steps, namely group formation
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and group transformation [2,3]. How group formation occurs
is thought to be key for major transitions to ensue, because
both obligate multicellularity and eusociality have occurred
by the staying together, and not the coming together, of
lower-level entities [3]. Group formation matters in that stay-
ing together typically leads to higher relatedness relative to
coming together, yet coming together can lead to high relat-
edness [52] but has seemingly not led to a major transition.
This suggests that high relatedness alone is insufficient to
explain why group formation is crucial. A contributing
factor may be that staying together provides a stage for
manipulation: staying together creates a power asymmetry,
possibly giving the maternal entity an advantage at the very
least by being there first. Even in clonal groups which lack gen-
etic conflict between group members, such power asymmetry
may be exploited by parasitic genetic elements seeking to pro-
mote their own transmission (owing to different transmission
patterns among transposons, nuclear genes and cytoplasmic
genes, or owing to different relatedness coefficients [53]). A
parasitic genetic element might gain control of the division
machinery of its host cell, keep daughter cells together and
exploit them for its own benefit. This might occur against
the interests of the host cell (i.e. with B <C from the cell’s per-
spective), possibly releasing an arms race [54]. However, in
analogy to our results, such manipulation might also release
the evolution of some form of specialization, eventually dissol-
ving conflict between host and parasite, yielding a mutualism.

Although group formation and transformation are seen as
occurring sequentially [3], our results indicate that they may
reinforce each other. Group formation is seen as occurring
first, whereby conflict is reduced [3]. Subsequently, group trans-
formation, involving the evolution of division of labour, is seen
as following [3]. By contrast, our model shows that after some
incipient group formation via manipulation, group transform-
ation can ensue via maternal reproductive specialization,
which can then feed back to increase selection for helping.
This positive feedback between helping and division of
labour triggered by manipulation can dissolve conflict and
generate a major transition from solitary living to eusociality.

Our results suggest how other major transitions might
occur via similar mechanisms. Both the possibility of
manipulation and the alleviation by manipulated parties of
trade-offs faced by manipulating parties can occur in mul-
tiple settings. Additionally, subsequent interest alignment
may occur not only through kin-selected benefits, but also
through direct benefits. Thus, conflict dissolution may not
only apply to fraternal but also to egalitarian major tran-
sitions [55]. Furthermore, conflict dissolution is likely to be
important in cultural evolution. For instance, tax in its earliest
forms constituted enforced labour [56], although tax compli-
ance is now voluntary to a large extent in developed
economies [57]. Voluntary tax compliance might stem from
initial exploitation by monopolist rulers, triggering cultural
evolution (e.g. of societal benefits) that dissolved conflict to
some extent (e.g. as personal ethics evolve leading many
subjects to eventually want to pay tax).

To conclude, our results offer a widely relevant mechan-
ism for a unified hypothesis for the origin of eusociality
and diverse features thereof, and suggest a reinterpretation
of available evidence. More generally, analogous mechanisms
of conflict dissolution operating during evolutionary, cultural
or behavioural timescales may help understand how agree-
ment can arise from conflict in other contexts.
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Outline

This Supplementary Information contains the details of our evolutionary model and is organized as follows.

First, in Evolutionary model set-up (section 1), we introduce assumptions, notions, and notation that will be

used when building the model. Second, in Selection gradients (section 2), we build the population dynamics

model that allows us to identify invasion fitness (i.e., the growth rate of a rare mutant subpopulation in a res-

ident population at equilibrium); this enables us to calculate the selection gradients which provide the direc-

tion of selection. We obtain a generic expression of the selection gradient from a general formula of eigenvalue

(here, invasion fitness) perturbation that writes the selection gradient in terms of reproductive value, stable

mutant distribution, and the local sensitivity of mutant vital rates to marginal changes in trait values. Using

the reproductive value and stable mutant distribution for our model, we obtain a generic yet simplified expres-

sion of the selection gradient for our model. We use this simplified expression to derive the selection gradient

of the evolving traits we study (helping probability and reproductive effort). Third, in Inclusive fitness effects

(section 3), we show that the selection gradients of all traits can be written in terms of inclusive fitness effects

for all the model cases we consider. Fourth, in Conflict dissolution and benefit-cost ratio zones (section 4), we

define conflict dissolution and show that a necessary condition for conflict dissolution via maternal reproduc-

tive specialization is that there is evolutionary synergy of reproductive effort on helping. Fifth, in Evolutionary

synergy and trade-off alleviation (section 5), we show that such synergy is equivalent to trade-off alleviation

by helpers if reproductive effort is optimal. Sixth, in Evolutionary dynamics (section 6), we postulate that the

evolutionary dynamics satisfy a form of the “canonical equation” of adaptive dynamics. This enables us to use

the derived selection gradients to write equations describing the evolutionary dynamics of the evolving traits.

Seventh, in Specific functional forms (section 7), we specify functions for the vital rates and the joint helping

probability which enables us to obtain numerical solutions for the evolutionary dynamics. Finally, in Specifi-

cation of Fig. 2, and additional figures (section 8), we give the specification of functional forms and parameter

values used to create the figures in the main text, and provide additional figures with results. Table S1 presents

a summary of our notation.
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Table S1: Summary of notation.

Notation Meaning

p Helping probability: probability that a first-brood offspring stays in the maternal nest and helps

x Maternal influence: maternal effort to induce first-brood offspring to become a helper

y Offspring resistance: offspring effort to resist the maternal influence

z Reproductive effort: maternal effort to produce second-brood offspring

sa Offspring survival: probability that an offspring from brood a ∈ {1,2} survives dispersal

sM Parent survival: probability that a young couple becomes an old couple

fa Fertility: number of offspring produced a couple of age a ∈ {1,2}

σa,` Brood sex proportion: fraction of sex-` offspring produced in brood a ∈ {1,2}

q`,i ,k Transmission probability: probability that an offspring is of type i ∈ {r,m} (resident or mutant)

given it is of sex-` and its parents are of type k ∈ {rm,mr} (resident mother and mutant father

or mutant mother and resident father)

h Expected number of helpers: expected number of helpers that a couple has

Fa,`,i ,k Effective fertility: expected number of surviving reproductive, sex-` offspring of type i produced by

an age-a couple of type k

Πa,`,i ,k Productivity: probability that a young couple survives to age a times its effective fertility at that age

N`,i Density of unmated individuals: number of unmated individuals of genotype i and sex `

Na,k Density of couples: number of couples of age a and type k

Nk Density of matings: number of matings of type k before density dependence

N Fixed number of nesting sites in the population

α Nest availability: density dependent probability that a new couple finds a nesting site

λ Invasion fitness: asymptotic growth rate of a rare mutant subpopulation in a resident

population at demographic equilibrium

Sζ Selection gradient of trait ζ

u Stable mutant distribution: asymptotic distribution of neutral mutants

v Reproductive values: long-term contribution by neutral mutants to the population

G Genetic covariance matrix

t Ecological time

τ Evolutionary time

B Marginal benefit of helping: marginal effect of helpers on late productivity

C Marginal cost of helping: marginal effect of helpers on early productivity

D Marginal productivity of late fertility: marginal effect of late fertility on late productivity

ρA,H ,P or ρA Relative reproductive worth for a random actor in A relative to a random candidate helper in H

of a random payee in P
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1 Evolutionary model set-up

1.1 Basic assumptions and variables

Adaptive dynamics assumptions. We study the co-evolutionary dynamics of the helping probability p of

first-brood offspring and the reproductive effort z devoted to the production of second-brood offspring by a

mother. We do this by considering repeated invasion-fixation events of rare mutant alleles in a large popula-

tion of resident alleles [1, 2, 3, 4]. We make the standard assumptions that each trait is controlled by a single

locus, and that the effects of a mutation on trait values are marginally small and unbiased (i.e., a mutation is

equally likely to increase or decrease the trait value). Given the small phenotypic effect of mutations and the

large population size, a newly arisen mutation that is not neutral either becomes fixed or is eliminated. We

also assume a standard separation of timescales. Specifically, we assume that mutation events are rare enough

that natural selection either fixes or eliminates a non-neutral mutation before another mutation arises. The

repetition of this mutant invasion sequence leads to evolutionary change in the resident phenotype. Thus,

population dynamics occur in a fast “ecological” time scale t (that we measure in discrete time) whereas evo-

lutionary change occurs in a slow “evolutionary” timescale τ (that we measure in continuous time).

Model cases. We consider model cases that differ in three aspects. First, the genetic system (P, for “ploidy”)

can be either (i) diploid (P = D, in which case both sexes are diploid) or haplodiploid (P = HD, in which case fe-

males are diploid and males are haploid). Second, the individuals genetically controlling the helping behavior

(C, for “control”) can be either (i) offspring (C = O, for “offspring control”), (ii) the mother (C = M, for “mater-

nal control”), or (iii) both mother and offspring (C = S, for “shared control”). Third, the sex of helpers (G, for

“gender”) can be either (i) female and male (G = B, for “both sexes help”), or (ii) exclusively female (G = F, for

“only females help”). This yields twelve model cases (Fig. S1). For instance, in one model case the genetic sys-

tem is diploid, helping is under offspring control, and both sexes help (D-O-B), which is relevant to termites if

helping is under offspring control; in another model case, the genetic system is haplodiploid, helping is under

shared control, and only females help (HD-S-F), which is relevant to eusocial hymenoptera if helping is under

shared control. Although our focus is on model cases of shared control that allow us to study the evolution-

ary dynamics of parent-offspring conflict over helping, model cases of offspring control and maternal control

serve as stepping stones in the building and analysis of model cases of shared control.

Evolving traits. For the model cases where helping is under either offspring or maternal control, we con-

sider the coevolution of two traits: (i) the probability p ∈ [0,1] that a first-brood offspring stays at the nest and

becomes a helper, and (ii) the maternal reproductive effort z ∈ R∗+1. For all model cases, we assume that re-

productive effort z is exclusively under maternal control. Thus, when helping is under offspring or maternal

control, we follow the evolution of the phenotypic vector z = (p, z)ᵀ. For model cases where helping is under

shared control, we consider the coevolution of three traits: maternal influence x ∈ R+, offspring resistance

y ∈ R+, and maternal reproductive effort z ∈ R+. When considering helping under shared control, we assume

1Throughout, R+ refers to the set of non-negative reals, that is, R+ = {x ∈R|x ≥ 0}. R∗+ refers to the set of positive reals, that is, R∗+ =
{x ∈R|x > 0}.
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Naked-mole rats

Eusocial hymenopteraGall thrips
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Ambrosia beetles

Cases relevant to:

Cases relevant to:

Figure S1: Model cases we consider. Case relevance is based on Ross et al.[5] and Davies et al.[6].

that the helping probability p(x, y) is a function of maternal influence x and offspring resistance y (i.e., p(x, y)

is a “joint phenotype” between mother and offspring; [7]). Thus, when helping is under shared control, we fol-

low the evolution of the phenotypic vector z = (x, y, z)ᵀ. For a given trait ζ (where ζ ∈ {
p, z

}
for model cases of

offspring and maternal control, and ζ ∈ {
x, y, z

}
for model cases of shared control), we denote by ζr the resident

trait value and by ζm the mutant trait value; similarly, we denote by zr = (ζr)ᵀ the resident phenotypic vector

and by zm = (ζm)ᵀ the mutant phenotypic vector. By some abuse of notation, we also denote the resident trait

value by ζ and the resident phenotypic vector by z. It is then understood that ζ≡ ζr and z ≡ zr.

Life cycle. We consider a finite but large population of individuals with a fixed number N of nesting sites.

Generations are overlapping, and the life cycle is lifetime monogamous with two offspring broods, as follows

(Fig. S2). (i) In each nesting site, there is one singly mated female characterized by her genotype and the geno-

type of the male she mated or is mating with: we refer to a mated female and her mate as a “couple”. We let

a index the age of a couple, so that a = 1 for a young couple and a = 2 for an old couple. We let ` denote the

sex of an individual, so ` = ♀ for a female and ` = ♂ for a male. (ii) The female of a young couple produces

and provides care for a fixed number f1 of first-brood offspring, a proportion σ1,` of which are of sex `. A first-

brood offspring of sex ` either remains at the nest with probability p` to become a non-reproductive helper,

or disperses with probability 1− p`. Each dispersed first-brood offspring survives dispersal with probability

s1 to become an unmated reproductive. Thus, a young couple produces F1,` = f1σ1,`(1− p`)s1 unmated re-

productive offspring. (iii) A young couple either survives with probability sM to become an old couple or dies

with probability 1− sM . (iv) The female of an old couple produces a number f2 of second-brood offspring, a

proportion σ2,` of which are of sex `. A second-brood offspring always disperses, and survives dispersal with

probability s2 to become an unmated reproductive. Thus, an old couple produces F2,` = f2σ2,`s2 unmated

reproductive offspring. We call Fa,` the age-specific sex-specific effective fertility of a couple. Consequently,

the expected number of sex-` unmated reproductives produced by a couple through first-brood offspring is

Π1,` = F1,`, and the expected number of sex-` unmated reproductives produced by a couple through second-

brood offspring is Π2,` = sM F2,`. We call Πa,` the age-specific sex-specific productivity of a couple. (v) Old

couples die. (vi) Unmated reproductives mate singly at random and establish nests subject to the availability

of nesting sites, which is measured by α. Mated reproductives that fail to establish a nest die.
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Unmated
females,

Young
couples,

Old
couples,

Unmated
males,

Figure S2: Resident life cycle. Unmated females and males mate once to become young couples that may

survive to become old couples. Each couple occupies a single nesting site, the number of which is constant.

The female of a young couple produces first-brood offspring and when the couple is old the female produces

second-brood offspring. Each ellipse corresponds to a “demographic class” of individuals or of couples of

individuals. Here N j is the number of individuals of demographic class j , Fa,` is the effective fertility of a

couple of age a through sex-` offspring, and α measures the density dependent probability that a new couple

finds a nesting site.

Genotypes. Consideration of mutant genotypes leads to a complete life cycle comprising ten classes of indi-

viduals or of couples of individuals (Fig. S3). We let i index the genotype of unmated individuals. The genotype

i of an unmated individual can be either r for a resident or m for a mutant, where due to the assumption that

the mutant allele is rare, a mutant is heterozygous in diploids and in female haplodiploids, and hemizygous

in male haplodiploids. Similarly, we let k index the “type” of a couple, which comprises the genotype of the

female and the genotype of the male of the couple in that order. That is, the type k of a couple can be (i) rr

when the female and male are both residents, (ii) rm when the female is resident and the male is mutant, or

(iii) mr when the female is mutant and the male is resident. We do not need to consider the couple type mm

comprising a mutant female and a mutant male, as the frequency of such type is negligible when the mutant

allele is rare. For a couple of type k, we denote by ♀(k) the genotype of the female and by ♂(k) the genotype of

the male in the couple, that is,

♀(k) =


m if k = mr

r if k = rr or k = rm,
(S1.1.1a)

and

♂(k) =


m if k = rm

r if k = rr or k = mr.
(S1.1.1b)

Dependence of vital rates on the evolving traits. We assume that early fertility f1 and first-brood survival

s1 are constants. In contrast, we assume that the couple’s survival sM , the late fertility f2, and the second-

brood survival s2 depend on the individuals’ genotypes. Thus, the vital rates sM , f2, and s2 are functions of

7
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Figure S3: Resident-mutant life cycle. There are ten demographic classes, of which four exclusively involve

resident genotypes and six involve mutant genotypes.

the evolving phenotype z. More specifically, we assume that the vital rates sM , f2, and s2 are functions of the

expected number of helpers hk and the reproductive effort zk that an old couple of type k has. We express hk

in terms of genotypes in section 1.3 below. Regarding zk , since reproductive effort is always under maternal

control, the reproductive effort of an old couple of type k is

zk = z♀(k), (S1.1.2a)

which, via equation (S1.1.1a), equals zr (≡ z) if the female in the couple is resident or zm if she is mutant. With

our notational conventions, this implies that

zrr = zr ≡ z (S1.1.2b)

always holds.

Brood sex proportions. As previously stated, we denote byσa,` the proportion of offspring of sex ` produced

by a couple of age a. The brood sex proportions satisfy

∑
`∈

{
♀,♂

}σa,` = 1 ∀a ∈ {1,2} (S1.1.3)

because each offspring is either a female or a male. In the following, we will also use the shorthand notation

σa ≡σa,♀, and refer to it as the sex proportion of brood a. Additionally, we will also write

σᵀ
a =

(
σa,♀,σa,♂

)
(S1.1.4)

for the vector collecting the sex proportions of brood a.
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Maximum number of helpers. We denote the maximum number helpers by h̄. For model cases where both

sexes help (G = B),

h̄ = f1. (S1.1.5a)

For model cases where only females help (G = F),

h̄ = f1σ1. (S1.1.5b)

1.2 Transmission and helping probabilities

Transmission probability. We denote by q`,i ,k the probability that an offspring is of genotype i given that

it is of sex ` and that its parents are of type k. We refer to this conditional probability as the transmission

probability, and list its values in Fig. S4. Although the transmission probability depends on the genetic system

(diploid or haplodiploid), it invariably satisfies the following set of identities:

q`,r,rr = 1 ∀` ∈ {♀,♂}, (S1.2.1a)

q`,m,rr = 0 ∀` ∈ {♀,♂}, (S1.2.1b)∑
i∈{r,m}

q`,i ,k = 1 ∀` ∈ {♀,♂} and ∀k ∈ {rr, rm,mr}, (S1.2.1c)

∑
`∈

{
♀,♂

} q`,i ,k = 1 ∀i ∈ {r,m} and ∀k ∈ {rm,mr}. (S1.2.1d)

Equations (S1.2.1a) and (S1.2.1b) state that all offspring of a resident couple (rr) are resident (r) regardless of

their sex. Equation (S1.2.1c) holds because an offspring is either resident or mutant, regardless of its sex and

the genotypes of its parents. Finally, (S1.2.1d) states that when parents have different genotypes (one being

resident, the other mutant), and for each possible genotype of the offspring, the transmission probability is a

probability distribution over the sexes of the offspring.

The ratio

q♀,m,rm

q♂,m,mr

(S1.2.2a)

will naturally arise in our analysis. This ratio can be interpreted as a measure of transmission asymmetry

across sexes inherent to the genetic system, that is, a measure of how likely a mutant father is to transmit his

mutant allele to a daughter (the numerator of (S1.2.2a), q♀,m,rm) compared to how likely a mutant mother is to

transmit her allele to a son (the denominator of (S1.2.2a), q♂,m,mr). It can be checked that the ratio (S1.2.2a)

simplifies to

q♀,m,rm

q♂,m,mr

=


1 for diploids (G = D)

2 for haplodiploids (G = HD)
. (S1.2.2b)

Equation (S1.2.2b) states that there is no transmission asymmetry across sexes in diploids, but that in hap-

lodiploids mutant fathers are twice as likely to transmit their mutant alleles to their daughters as mutant moth-

ers are to transmit their mutant alleles to their sons. We will see that such transmission asymmetry means that,

for diploids, a neutral mutation is asymptotically equally likely to occur in the female or the male of a couple;

in contrast, for haplodiploids, a neutral mutation is asymptotically twice as likely to occur in the female rather

than the male of a couple.
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The elements of

(Eq. S1.2.1d)
(Eq. S1.2.1d)

Figure S4: Transmission probability. List of values for the conditional probability qi ,`,k that an offspring is

of genotype i given that it is of sex ` and that its parents are of type k. Identities (S1.2.1c) and (S1.2.1d) are

highlighted in color.

Helping probability. We denote by p`,i ,k the probability that an offspring of sex ` and genotype i produced

by a couple of type k does not disperse and instead stays at the nest to become a helper. We refer to this

conditional probability as the helping probability and list its values in Fig. S5. The helping probability depends

on (i) whether both sexes or only females help and (ii) whether helping is under offspring, maternal, or shared

control. For model cases of shared control, we define the helping probability function

p :R+×R+ → [0,1]

(x, y) 7→ p(x, y),

such that p(x, y) is the helping probability of an offspring when the mother exerts influence x and the offspring

exerts resistance y . We assume that p is smooth, increasing in x, and decreasing in y , so that

∂p

∂x
> 0, (S1.2.3a)

∂p

∂y
< 0 (S1.2.3b)

hold for all the domain of p(x, y). That is, an increase in maternal influence (resp. an increase in offspring

resistance) increases (resp. decreases) the probability that a first-brood offspring becomes a helper.

1.3 Expected number of helpers

Expected number of helpers of a couple of type k. As previously stated, the evolving phenotype z modulates

the vital rates sM , f2, and s2 because these vital rates are functions of the expected number of helpers hk and

of the reproductive effort zk that each old couple of type k has. We now derive an expression for hk in terms of

individuals’ genotypes. We start by using the definitions of the transmission probability q`,i ,k and the helping

probability p`,i ,k (section 1.2) to write an expression for the expected proportion of helpers of sex ` among the

first-brood offspring of a couple of type k, p`,k , as

p`,k = ∑
i∈{r,m}

q`,i ,k p`,i ,k . (S1.3.1)
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Figure S5: Helping probability. List of values for the helping probability p`,i ,k for the model cases considered.

The proportion of helpers of either sex among the first-brood offspring of a couple of type k can then be written

as

pk = ∑
`∈

{
♀,♂

}σ1,`p`,k = ∑
`∈

{
♀,♂

}σ1,`

∑
i∈{r,m}

q`,i ,k p`,i ,k , (S1.3.2)

from which the expected number of helpers hk is derived as

hk = f1pk (S1.3.3a)

= f1
∑

`∈
{
♀,♂

}σ1,`

∑
i∈{r,m}

q`,i ,k p`,i ,k . (S1.3.3b)

Expected number of helpers of a resident couple. The expected number of helpers of a couple of type rr

(i.e., the expected number of helpers per nest in a resident population) will be important in our analysis. We

adopt a notational convention similar to the one we have adopted for the helping probability p, namely to use

h as (i) a generic variable referring to the expected number of helpers, (ii) as the value of such variable for the

specific case of a couple of type rr (i.e., h ≡ hrr), and (iii) as a function of evolving traits whose output is the

expected number of helpers, to be specified below. With these conventions, the expected number of helpers

available to a couple of type rr can be written as

hrr ≡ h (S1.3.4a)

= f1
∑

`∈
{
♀,♂

}σ1,`

∑
i∈{r,m}

q`,i ,rrp`,i ,rr

= f1
∑

`∈
{
♀,♂

}σ1,`p`,r,rr, (S1.3.4b)
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where the first equality follows from expression (S1.3.3b) with k = rr, and the last one from identities (S1.2.1a)

and (S1.2.1b). By inspection of the values of the helping probability given in Fig. S5, and since σ1,♀+σ1,♂ = 1

(S1.1.3) holds, expression (S1.3.4b) reduces to

hrr ≡ h = h(p) = h̄p (S1.3.5a)

for model cases of offspring or maternal control, and to

hrr ≡ h = h(x, y) = h̄p(x, y) (S1.3.5b)

for model cases of shared control. Here, h̄ = f1 for model cases where both sexes help (S1.1.5a) and h̄ = f1σ1

for model cases where only females help (S1.1.5b). In expression (S1.3.5a) we have used the expected number

of helpers function

h : [0,1] → [0, h̄]

p 7→ h̄p,

such that h(p) = h̄p, while h(x, y) in expression (S1.3.5b) refers to the function

h :R+×R+ → [0, h̄]

(x, y) 7→ h̄p(x, y),

such that h(x, y) = h̄p(x, y).

1.4 Assumptions on vital rates

The mechanism of conflict dissolution that we identify rests on three critical assumptions. First, we assume

that the late fertility of a mother can evolve (genetically or plastically). Second, we assume that mothers face

life-history trade-offs (i) between fertility and survival to old age; (ii) between fertility and survival of second-

brood offspring; or (iii) between fertility and both survival rates. Finally, we assume that such life-history

trade-offs can be alleviated by helpers. We now formalize each of these assumptions.

Late fertility of a couple of type k, f2,k . We assume that the number of second-brood offspring produced by

a couple of type k, f2,k , depends on the mother’s reproductive effort, zk = z♀(k) (S1.1.2a), via

f2,k = f2(zk ), (S1.4.1)

where

f2 :R∗
+ →R∗

+

z 7→ f2(z),
(S1.4.2)

is a smooth function. Furthermore, we assume f2 is strictly increasing; that is,

d f2

dz
> 0 (S1.4.3)

holds for all z ∈R∗+. Equations (S1.4.1) and (S1.4.3) respectively encapsulate the assumptions that mother’s late

fertility depends on the evolving mother’s reproductive effort zk , and that a larger reproductive effort implies

a larger late fertility f2,k .
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Survival probabilities sM ,k and s2,k . We assume that the survival probabilities sM ,k and s2,k can be written

as functions of both the late fertility, f2,k , and the expected number of helpers, hk , of a couple of type k. More

explicitly, we let the survival probabilities be given by

sM ,k = sM ( f2,k ,hk ) = sM ( f2(zk ),hk ), (S1.4.4a)

s2,k = s2( f2,k ,hk ) = s2( f2(zk ),hk ), (S1.4.4b)

where the rightmost equalities follow from (S1.4.1), and where

sM : SM × [0, h̄] → (0,1)

( f2,h) 7→ sM ( f2,h),
(S1.4.5a)

s2 : S2 × [0, h̄] → (0,1]

( f2,h) 7→ s2( f2,h),
(S1.4.5b)

are smooth functions decreasing in f2
2. In (S1.4.5), SM and S2 are subsets of R∗+.

We assume that either sM or s2 is decreasing in f2, that is,

∂sM

∂ f2
< 0 or (S1.4.6a)

∂s2

∂ f2
< 0 (S1.4.6b)

holds for all f2 and all h in the domains of these functions and where neither of the two derivatives is positive.

Inequalities (S1.4.6) encapsulate the idea that mothers face a life-history trade-off between fertility and sur-

vival: all else being equal, a greater investment in late fertility f2 from the part of the mother negatively affects

at least one vital rate among sM and s2.

Finally, we assume that either sM or s2 is increasing in h, that is,

∂sM

∂h
> 0 or (S1.4.7a)

∂s2

∂h
> 0, (S1.4.7b)

holds for all f2 and all h in the domains of these functions and where neither of the two derivatives is negative.

Inequalities (S1.4.7) encapsulate the idea that helpers can increase the vital rates negatively affected by an

increase in the mother’s reproductive effort, thus potentially alleviating the trade-offs involved.

1.5 Effective fertility

The early effective fertility F1,`,i ,k gives the expected number of offspring of sex ` and genotype i that suc-

cessfully disperse and that are produced by a couple of age 1 and type k. The early effective fertility is given

by

F1,`,i ,k = f1σ1,`q`,i ,k (1−p`,i ,k )s1. (S1.5.1)

2The upper bound of the codomain of sM is open so that sM ,rr < 1 and the resident equilibrium of the resident system is stable, as we

will show below. The lower bounds of the codomains of sM and s2 are open so that, respectively, there are old couples and second-brood

offspring can become reproductive.
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Indeed, a young couple produces a fixed number f1 of first-brood offspring, a proportion σ1,` of which are

of sex `. Of these, a proportion q`,i ,k is of genotype i , of which a proportion (1−p`,i ,k )s1 both disperses and

survives dispersal. In particular, letting i = r, k = rr, and using identity (S1.2.1a), we find

F1,`,r,rr = f1σ1,`(1−p`,r,rr)s1 (S1.5.2)

as an expression for the early effective fertility F1,`,r,rr of a resident couple of type rr through offspring of geno-

type r and sex ` (i.e., the early rate of production of offspring of sex ` by a resident couple in a resident popu-

lation).

An old couple of type k produces a number of offspring f2,k , a proportion σ2,` of which are of sex `. With

probability q`,i ,k one of such offspring of sex ` is of genotype i , with probability one it disperses (as we as-

sume that all second-brood offspring disperse from their parental nest), and with probability s2,k it survives

dispersal. It follows that the late effective fertility F2,`,i ,k (giving the expected number of individuals of sex `

and genotype i that successfully disperse and that are produced by a couple of age 2 and type k) is given by

F2,`,i ,k = f2,kσ2,`q`,i ,k s2,k . (S1.5.3)

Similarly to early effective fertility, the late effective fertility of a resident couple in a resident population eval-

uates to

F2,`,r,rr = f2,rrσ2,`s2,rr. (S1.5.4)

1.6 Productivity

We will show that the selection gradient in our model can be conveniently written in terms of what we term

the age-specific and sex-specific productivity of a couple. The productivity Π`,i ,k of a k-type couple through

offspring of sex ` and genotype i is the expected lifetime number of unmated reproductive offspring of sex `

and genotype i produced by a couple of type k. The productivity of a k-type couple through offspring of sex `

and genotype i is given by the sum of a young couple’s effective fertility and the old couple’s effective fertility,

the latter discounted by the probability sM ,k that a young couple survives to old age. From this, we have

Π`,i ,k = F1,`,i ,k + sM ,k F2,`,i ,k . (S1.6.1)

It will prove useful for our subsequent analysis to highlight the two summands of the previous expression with

more dedicated notation. We will then alternatively write the productivity of a k-type couple through offspring

of sex ` and genotype i as

Π`,i ,k =Π1,`,i ,k +Π2,`,i ,k , (S1.6.2)

where the first and second summands are respectively the early and late productivity of a couple of type k

through offspring of sex ` and genotype i . These are given by

Π1,`,i ,k = F1,`,i ,k = q`,i ,kσ1,` f1(1−p`,i ,k )s1, (S1.6.3a)

Π2,`,i ,k = sM ,k F2,`,i ,k = q`,i ,kσ2,`sM ,k f2,k s2,k , (S1.6.3b)
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where the second equalities follow from substituting the expressions for early and late effective fertility (equa-

tions (S1.5.1) and (S1.5.3)) into (S1.6.1) and rearranging.

We define the (total) early and late productivity of a type-k couple as the sum of the productivities of each

age over both sexes (female and male) and both genotypes (resident and mutant) of offspring. We can use pre-

viously established relationships between our variables to write down relatively simple expressions for these

two quantities. The early productivity of a type-k couple can be then written as:

Π1,k = ∑
`∈{♀,♂}

∑
i∈{r,m}

Π1,`,i ,k (S1.6.4)

= ∑
`∈{♀,♂}

∑
i∈{r,m}

q`,i ,kσ1,` f1(1−p`,i ,k )s1 (S1.6.5)

= f1s1
∑

`∈{♀,♂}

σ1,`

∑
i∈{r,m}

q`,i ,k (1−p`,i ,k )

= f1s1
∑

`∈{♀,♂}

σ1,`

( ∑
i∈{r,m}

q`,i ,k −
∑

i∈{r,m}
q`,i ,k p`,i ,k

)

= f1s1
∑

`∈{♀,♂}

σ1,`
(
1−p`,k

)
(S1.6.6)

= f1s1

 ∑
`∈{♀,♂}

σ1,`−
∑

`∈{♀,♂}

σ1,`p`,k


= f1s1(1−pk ) (S1.6.7)

= (
f1 −hk

)
s1, (S1.6.8)

where line (S1.6.5) follows from substituting (S1.6.3a) into (S1.6.4); line (S1.6.6) follows from identities (S1.2.1c)

and (S1.3.1); line (S1.6.7) follows from identities (S1.1.3) and (S1.3.2); and line (S1.6.8) uses (S1.3.3a) and re-

arranges. Expression (S1.6.8) makes it explicit that the early productivity of a k-type couple is equal to the

expected number of first-brood offspring that do not become helpers and instead disperse ( f1 −hk ) times the

probability that they survive dispersal (s1). To capture this in a general way, we define the early productivity

function

Π1 : [0, f1] →R+

h 7→ (
f1 −h

)
s1,

(S1.6.9)

such thatΠ1(h) = (
f1 −h

)
s1.

Similarly, the late productivity of a type-k couple can be written as:

Π2,k = ∑
`∈{♀,♂}

∑
i∈{r,m}

Π2,`,i ,k (S1.6.10)

= ∑
`∈{♀,♂}

∑
i∈{r,m}

q`,i ,kσ2,`sM ,k f2,k s2,k (S1.6.11)

= sM ,k f2,k s2,k

∑
`∈{♀,♂}

σ2,`

∑
i∈{r,m}

q`,i ,k

= sM ,k f2,k s2,k

∑
`∈{♀,♂}

σ2,` (S1.6.12)

= sM ,k f2,k s2,k , (S1.6.13)
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where line (S1.6.11) follows from substituting (S1.6.3b) into (S1.6.10); line (S1.6.12) follows from identity (S1.2.1c);

and line (S1.6.13) follows from identity (S1.1.3).

The (total) productivity of a couple of type k is the sum of its early and late productivities, that is

Πk =Π1,k +Π2,k . (S1.6.14)

Two further identities concerning productivities are worth pointing out. First, note that, by substituting

(S1.4.1) and (S1.4.4) into (S1.6.13), the late productivity of a couple of type k is given by

Π2,k = sM ( f2(zk ),hk ) f2(zk )s2( f2(zk ),hk ).

This motivates our introduction of the late productivity function

Π2 :R∗
+× [0, f1] →R∗

+

( f2,h) 7→ sM ( f2,h) f2s2( f2,h),
(S1.6.15)

such thatΠ2( f2,h) = sM ( f2,h) f2s2( f2,h). The late productivity of a couple of type k can then be written as

Π2,k =Π2( f2,k ,hk ). (S1.6.16)

Second, substituting equation (S1.6.1) into (S1.6.2) and by identity (S1.6.13) we find that the productivity

of a k-type mother through offspring of sex ` and genotype i (S1.6.2) can be also written as

Π`,i ,k = q`,i ,k
[
σ1,` f1(1−p`,i ,k )s1 +σ2,`Π2,k

]
. (S1.6.17)

In particular, and by setting i = r and k = rr in the previous expression, the productivity of a rr-type mother

through offspring of sex ` and type r (i.e., the productivity of a mother through offspring of sex ` in a resident

population) is given by

Π`,r,rr = q`,r,rr
[
σ1,` f1(1−p`,r,rr)s1 +σ2,`Π2,rr

]
=σ1,` f1(1−p`,r,rr)s1 +σ2,`Π2,rr, (S1.6.18)

where the second equality follows from identity (S1.2.1a).
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2 Selection gradients

We now derive the selection gradients for our model. To do this, we proceed in nine steps. First, we build

a population dynamics model of a resident population and a rare mutant subpopulation (Resident-mutant

population dynamics; section 2.1). Second, we find the unique stable resident equilibrium where the mutant

is absent (Resident population dynamics and resident equilibrium; section 2.2). Third, we identify invasion

fitness, which is the growth rate of a rare mutant population around such resident equilibrium (Invasion fit-

ness; section 2.3). Fourth, we write a general expression for the selection gradient, which gives the direction of

selection in phenotypic space, by applying a general result on the sensitivity of the leading eigenvalue of irre-

ducible and nonnegative matrices [8, 9, 1, 10]. This expression gives the selection gradient in terms of marginal

effects of the mutant on vital rates weighted by reproductive values and the components of the stable mutant

distribution (Selection gradient (generic form); section 2.4). Fifth, we calculate the neutral mutant submatrix

required to obtain such reproductive values and stable mutant distribution (Neutral mutant submatrix, J◦mut;

section 2.5). Sixth, we find the reproductive values and stable mutant distribution for our model (Reproduc-

tive values and stable distribution; section 2.6). Seventh, using the particular form of the reproductive values

and the stable mutant distribution for our model, we obtain a simplified expression of the selection gradient

in terms of a couple’s productivity weighted by reproductive values and stable mutant proportions of different

classes (Selection gradient (generic, simplified form); section 2.7). Eighth, using such simplified selection gra-

dient, we obtain the selection gradient of traits affecting helping (Selection gradient of traits affecting helping;

section 2.8). Finally, we obtain the selection gradient of reproductive effort (Selection gradient of reproductive

effort; section 2.9).

2.1 Resident-mutant population dynamics

Having set up some of our general notation, we are ready to write the equations describing the population

dynamics of our model, which we let occur in discrete time.

Let N`,i (t ) denote the number of (dispersed) unmated reproductives of sex ` ∈ {♀,♂} and genotype i ∈ {r,m}

at “ecological” time t , so that N♀,r(t ), N♀,m(t ), N♂,r(t ), and N♂,m(t ) represent, respectively, the number of

unmated resident females, mutant females, resident males, and mutant males at time t . Likewise, let Na,k (t )

denote the number of couples of age a ∈ {1,2} and type k ∈ {rr, rm,mr} at time t . The variables N`,i and Na,k

for ` ∈ {♀,♂}, i ∈ {r,m}, a ∈ {1,2}, and k ∈ {rr, rm,mr} constitute the dynamic variables (ten in total) of the

population dynamics part of our model (Fig. S3). We collect these variables in the 10-dimensional vector

N(t ) =
 Nr(t )

Nm(t )

 , (S2.1.1)

concatenating the resident and the mutant population vectors, respectively given by

Nr(t ) = (N♀,r(t ), N♂,r(t ), N1,rr(t ), N2,rr(t ))ᵀ, (S2.1.2)

and

Nm(t ) = (N♀,m(t ), N♂,m(t ), N1,rm(t ), N1,mr(t ), N2,rm(t ), N2,mr(t ))ᵀ. (S2.1.3)
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We now write down the equations that allow us to project such variables from time t to time t + 1, and,

recursively, to any future time step.

Let

Nk (t ) = N♀,♀(k)(t )N♂,♂(k)(t ) (S2.1.4)

denote the product of unmated females of genotype ♀(k) and unmated males of genotype ♂(k) (see definitions

(S1.1.1a) and (S1.1.1b)), which evaluates to

Nrr(t ) = N♀,r(t )N♂,r(t ), (S2.1.5a)

Nrm(t ) = N♀,r(t )N♂,m(t ), (S2.1.5b)

Nmr(t ) = N♀,m(t )N♂,r(t ). (S2.1.5c)

Assuming random mating, the number of matings at time t giving rise to young couples of type k is propor-

tional to Nk (t ). Hence,

N1,k (t +1) =α(N(t ))Nk (t ), (S2.1.6)

whereα(N(t )) (an expression for which we derive in equation (S2.1.9) below) measures nesting site availability

and enforces the density-dependence condition that the total number of couples (i.e., nests) in the population

is equal to the total number of nesting sites, N , that is,

∑
k∈{rr,rm,mr}

∑
a∈{1,2}

Na,k (t +1) = N . (S2.1.7)

Each young couple of type k becomes an old couple at the next time step with probability sM ,k . Hence,

N2,k (t +1) = sM ,k N1,k (t ). (S2.1.8)

Substituting (S2.1.6) and (S2.1.8) into (S2.1.7), α(N(t )) in (S2.1.6) can be written in terms of our variables as

α(N(t )) = N −∑
k∈{rr,rm,mr} sM ,k N1,k (t )∑
k∈{rr,rm,mr}Nk (t )

. (S2.1.9)

In turn, the number of dispersed unmated individuals of sex ` and genotype i at time t +1 is given by

N`,i (t +1) = ∑
k∈{rr,rm,mr}

∑
a∈{1,2}

Na,k (t )Fa,`,i ,k , (S2.1.10)

where Fa,`,i ,k is the expected number of individuals of sex ` and genotype i that successfully disperse and that

are produced by a couple of age a and type k. The quantity Fa,`,i ,k is the effective fertility defined in section

1.5 (see expressions (S1.5.1) and (S1.5.3)).

Recursions (S2.1.6), (S2.1.8), and (S2.1.10) describe the population dynamics of our model: recursion (S2.1.6)

describes mating, recursion (S2.1.8) describes mated-pair survival, and recursion (S2.1.10) describes repro-

duction. It is convenient to write this set of equations in matrix notation as

N(t +1) = A(N(t ))N(t ), (S2.1.11)

where the projection matrix

A(N(t )) =
 Arr(N(t )) Arm

Amr(N(t )) Amm(N(t ))

 , (S2.1.12)
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comprises the submatrices

Arr(N(t )) =



0 0 F1,♀,r,rr F2,♀,r,rr

0 0 F1,♂,r,rr F2,♂,r,rr

α(N(t ))N♂,r(t ) α(N(t ))N♀,r(t ) 0 0

0 0 sM ,rr 0

 , (S2.1.13a)

Arm =



0 0 F1,♀,r,rm F1,♀,r,mr F2,♀,r,rm F2,♀,r,mr

0 0 F1,♂,r,rm F1,♂,r,mr F2,♂,r,rm F2,♂,r,mr

0 0 0 0 0 0

0 0 0 0 0 0

 , (S2.1.13b)

Amr(N(t )) =



0 0 0 0

0 0 0 0

α(N(t ))N♂,m(t ) 0 0 0

0 α(N(t ))N♀,m(t ) 0 0

0 0 0 0

0 0 0 0


, (S2.1.13c)

Amm(N(t )) =



0 0 F1,♀,m,rm F1,♀,m,mr F2,♀,m,rm F2,♀,m,mr

0 0 F1,♂,m,rm F1,♂,m,mr F2,♂,m,rm F2,♂,m,mr

0 α(N(t ))N♀,r(t ) 0 0 0 0

α(N(t ))N♂,r(t ) 0 0 0 0 0

0 0 sM ,rm 0 0 0

0 0 0 sM ,mr 0 0


. (S2.1.13d)

2.2 Resident population dynamics and resident equilibrium

In the absence of the mutant allele, Nm(t ) = (0, . . . ,0)ᵀ holds, and the population dynamics (S2.1.11) reduces to

the resident system

Nr(t +1) = Arr(Nr(t ))Nr(t ), (S2.2.1)

with

α(Nr(t )) = N − sM ,rrN1,rr(t )

Nrr(t )
. (S2.2.2)

Substituting (S2.2.2) into the projection matrix Arr(Nr(t )) (S2.1.13a), performing the matrix multiplication in

(S2.2.1), and simplifying, yields

N♀,r(t +1) = F1,♀,r,rrN1,rr(t )+F2,♀,r,rrN2,rr(t ), (S2.2.3a)

N♂,r(t +1) = F1,♂,r,rrN1,rr(t )+F2,♂,r,rrN2,rr(t ), (S2.2.3b)

N1,rr(t +1) = N − sM ,rrN1,rr(t ), (S2.2.3c)

N2,rr(t +1) = sM ,rrN1,rr(t ). (S2.2.3d)
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At an equilibrium N∗
r = (N∗

♀,r, N∗
♂,r

, N∗
1,rr, N∗

2,rr)ᵀ, the system satisfies

N♀,r(t +1) = N♀,r(t ) = N∗
♀,r, (S2.2.4a)

N♂,r(t +1) = N♂,r(t ) = N∗
♂,r

, (S2.2.4b)

N1,rr(t +1) = N1,rr(t ) = N∗
1,rr, (S2.2.4c)

N2,rr(t +1) = N2,rr(t ) = N∗
2,rr. (S2.2.4d)

Substituting (S2.2.4) into (S2.2.3) and solving the resulting linear system of equations, we find that the system

admits a unique equilibrium given by

N∗
♀,r =

N

1+ sM ,rr

(
F1,♀,r,rr + sM ,rrF2,♀,r,rr

)= N

1+ sM ,rr
Π♀,r,rr, (S2.2.5a)

N∗
♂,r

= N

1+ sM ,rr

(
F1,♂,r,rr + sM ,rrF2,♂,r,rr

)
= N

1+ sM ,rr
Π♂,r,rr, (S2.2.5b)

N∗
1,rr =

N

1+ sM ,rr
, (S2.2.5c)

N∗
2,rr =

N

1+ sM ,rr
sM ,rr, (S2.2.5d)

where the second equality in expressions (S2.2.5a) and (S2.2.5b) follows from identity (S1.6.1), which links

effective fertilities and productivities.

This equilibrium is locally stable. To show this, we perform a local stability analysis [1] of the resident

system (S2.2.1) at the resident equilibrium (S2.2.5). Evaluating the Jacobian matrix of (S2.2.1) at (S2.2.5) we

obtain the local stability matrix

Jres =
(
∂Nr(t +1)

∂N♀,r(t )
,
∂Nr(t +1)

∂N♂,r(t )
,
∂Nr(t +1)

∂N1,rr(t )
,
∂Nr(t +1)

∂N2,rr(t )

)∣∣∣∣∣
Nr=N∗

r

(S2.2.6a)

=



0 0 F1,♀,r,rr F2,♀,r,rr

0 0 F1,♂,r,rr F2,♂,r,rr

0 0 −sM ,rr 0

0 0 sM ,rr 0

 . (S2.2.6b)

This matrix has a block-triangular form composed of four 2×2 submatrices; because of this block-triangular

form, the eigenvalues of Jres correspond to the eigenvalues of the submatrices along the diagonal. As these

submatrices are both triangular, their eigenvalues are the values along their main diagonals. It follows that the

eigenvalues of Jres are zero (with multiplicity three) and −sM ,rr. Since we assume that sM ,rr < 1, the absolute

value of the leading eigenvalue of Jres is less than one, proving the local stability of N∗
r . We conclude that the

resident equilibrium is locally stable in the absence of the mutant allele.

From (S2.2.5a) and (S2.2.5b), we have that the sex ratio among unmated reproductives at the resident equi-

librium is given by the ratio of sex-specific productivities, that is,

N∗
♂,r

N∗
♀,r

=
Π♂,r,rr

Π♀,r,rr
. (S2.2.7)
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2.3 Invasion fitness

We now identify invasion fitness, that is, the asymptotic growth rate of a rare mutant population introduced at

the resident equilibrium

N∗ = (N∗
r ,0), (S2.3.1)

where N∗
r corresponds to (S2.2.5). To a first-order approximation, the population dynamics around the resi-

dent equilibrium are governed by the local stability matrix

J =
(
∂N(t +1)

∂N♀,r(t )
,
∂N(t +1)

∂N♂,r(t )
, . . . ,

∂N(t +1)

∂N2,rm(t )
,
∂N(t +1)

∂N2,mr(t )

)∣∣∣∣∣
N=N∗

, (S2.3.2)

that is, the Jacobian matrix of (S2.1.11) evaluated at the resident equilibrium (S2.3.1). Taking the partial deriva-

tives, it can be checked that this Jacobian has the block-triangular form [1]:

J =
Jres V

0 Jmut

 , (S2.3.3)

featuring submatrices 0 (a 6×4 matrix of zeros), Jres (the 4×4 matrix given by equation (S2.2.6b)), V (a 4×6

matrix), and

Jmut =



0 0 F1,♀,m,rm F1,♀,m,mr F2,♀,m,rm F2,♀,m,mr

0 0 F1,♂,m,rm F1,♂,m,mr F2,♂,m,rm F2,♂,m,mr

0
1

Π♂,r,rr

0 0 0 0

1

Π♀,r,rr
0 0 0 0 0

0 0 sM ,rm 0 0 0

0 0 0 sM ,mr 0 0


(S2.3.4)

(a 6×6 matrix). Given the block-triangular form of J (S2.3.3), the mutant submatrix Jmut governs the mutant

population dynamics around the resident equilibrium.

Invasion fitness is given by the leading eigenvalue λ of Jmut. Since raising Jmut to a sufficiently high power

yields matrices with all entries being positive, Jmut is nonnegative, irreducible, and primitive. It follows from

the Perron-Frobenius theorem that λ is real and positive [9], and that invasion fitness is well defined. Then, a

rare mutant allele invades if and only if the absolute value of the invasion fitness is larger than one.

2.4 Selection gradient (generic form)

We now use our identification of invasion fitness to obtain a general expression of the selection gradient, which

gives the direction of selection. Invasion fitness can be written as λ = λ(zm,z) to highlight the fact that it is

a function of both mutant and resident phenotypes because so are the entries of Jmut. Here, zm = (ζm)ᵀ =
(pm, zm)ᵀ and z = (ζ)ᵀ = (p, z)ᵀ for model cases of offspring or maternal control, or zm = (ζm)ᵀ = (xm, ym, zm)ᵀ

and z = (ζ)ᵀ = (x, y, z)ᵀ for model cases of shared control.

We assume that mutations have small phenotypic effects (i.e., we assume that selection is δ-weak; [11]).

Then, invasion fitness can be approximated by a first-order Taylor expansion of λ(zm,z) with respect to zm
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around z to obtain

λ(zm,z) ≈ 1+ (zm −z)ᵀS(z),

where we have used the fact that λ(z,z) = 1 (since mutant alleles coding for the same trait as the resident are

neutral), and where the selection gradient of z is given by

S(z) =
Sp (z)

Sz (z)

=


∂λ

∂pm

∣∣∣∣
zm=z

∂λ

∂zm

∣∣∣∣
zm=z

 , (S2.4.1)

for model cases of offspring and maternal control, or by

S(z) =


Sx (z)

Sy (z)

Sz (z)

=



∂λ

∂xm

∣∣∣∣
zm=z

∂λ

∂ym

∣∣∣∣
zm=z

∂λ

∂zm

∣∣∣∣
zm=z


(S2.4.2)

for model cases of shared control.

To calculate the selection gradient of ζ, Sζ(z), (where ζ ∈ {
p, z

}
for offspring and maternal control; ζ ∈{

x, y, z
}

for shared control), that is,

Sζ(z) = ∂λ

∂ζm

∣∣∣∣
zm=z

, (S2.4.3)

we use a classic result on perturbations of the leading eigenvalue of irreducible and nonnegative matrices. This

result implies that the selection gradient of ζ (S2.4.3) can be written as [9, 1]

Sζ(z) =
vᵀ

∂Jmut

∂ζm

∣∣∣∣
zm=z

u

vᵀu
, (S2.4.4)

where v and u are, respectively, the left and right eigenvectors associated to the leading eigenvalue of the

neutral mutant submatrix J◦mut, which equals one. Henceforth, we will denote by X ◦ a variable X considered

under neutrality, that is

X ◦ ≡ X |zm=z , (S2.4.5)

for any variable X . With this convention,

J◦mut ≡ Jmut|zm=z (S2.4.6)

=



0 0 F ◦
1,♀,m,rm F ◦

1,♀,m,mr F ◦
2,♀,m,rm F ◦

2,♀,m,mr

0 0 F ◦
1,♂,m,rm

F ◦
1,♂,m,mr

F ◦
2,♂,m,rm

F ◦
2,♂,m,mr

0
1

Π◦
♂,r,rr

0 0 0 0

1

Π◦
♀,r,rr

0 0 0 0 0

0 0 s◦M ,rm 0 0 0

0 0 0 s◦M ,mr 0 0


. (S2.4.7)
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2.5 Neutral mutant submatrix, J◦mut

To calculate the dominant left and right eigenvectors v and u of the neutral mutant submatrix J◦mut, we now

calculate the entries of J◦mut, together with other variables and rates considered under neutrality. All of these

neutral variables and rates can be written in terms of variables and rates of resident individuals in a resident

population.

Neutral reproductive effort, z◦
k . We start by calculating z◦

k , that is, the neutral reproductive effort exerted by

the female of an old couple of type k. For all k ∈ {rr, rm,mr}, this is given by

z◦
k ≡ zk |zm=z = z♀(k)

∣∣
zm=z

= z = zrr, (S2.5.1)

where the first equality follows from the definitions of zk (S1.1.2a) and neutrality (S2.4.5); the second equality

follows from the definition of ♀(k) (S1.1.1a) and our notational convention (S1.1.2b); and the last equality

follows again from our convention (S1.1.2b).

Neutral expected number of helpers, h◦
k . We proceed now to calculate h◦

k , that is, the expected number of

helpers for an old couple of type k evaluated at neutrality. Let us first note that, by inspection of the values of

the helping probabilities given in Figure S5, the following identity holds:

p◦
`,i ,k ≡ p`,i ,k

∣∣
zm=z = p`,r,rr. (S2.5.2)

Taking this into account, we can then write, for all k ∈ {rr, rm,mr},

h◦
k =

 f1
∑

`∈
{
♀,♂

}σ1,`

∑
i∈{r,m}

q`,i ,k p`,i ,k


∣∣∣∣∣∣∣

zm=z

(S2.5.3a)

= f1
∑

`∈
{
♀,♂

}σ1,`

∑
i∈{r,m}

q`,i ,k
(
p`,i ,k

)∣∣
zm=z (S2.5.3b)

= f1
∑

`∈
{
♀,♂

}σ1,`

∑
i∈{r,m}

q`,i ,k p`,r,rr (S2.5.3c)

= f1
∑

`∈
{
♀,♂

}σ1,`p`,r,rr

∑
i∈{r,m}

q`,i ,k (S2.5.3d)

= f1
∑

`∈
{
♀,♂

}σ1,`p`,r,rr (S2.5.3e)

= hrr = h (S2.5.3f)

where the first line (S2.5.3b) follows from substituting (S1.3.3b) and the definition of neutrality (S2.4.5); the

second line (S2.5.3b) follows from the fact that only the probabilities p`,i ,k are functions of the evolving traits

z; the third line (S2.5.3c) applies identity (S2.5.2); the fifth line (S2.5.3e) applies identity (S1.2.1c); and the final

line (S2.5.3f) follows from (S1.3.4b).

Neutral vital rates ( f ◦
2,k , s◦M ,k , and s◦2,k ). The entries of J◦mut as given in equation (S2.4.6) depend on the values

of the different vital rates under neutrality, that is, on f ◦
2,k , s◦M ,k , and s◦2,k . We calculate these values now.
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The late fertility of the female of a couple of type k under neutrality is given by

f ◦
2,k = f2(zk )

∣∣
zm=z = f2

(
zk |zm=z

)= f2(zrr) = f2,rr, (S2.5.4)

where the first equality follows from substituting equation (S1.4.1) and from the definition of neutrality (S2.4.5);

the second equality holds because the function f2 (S1.4.2) is the same for all k; the third equality follows from

equation (S2.5.1); and the last equality follows from (S1.4.1) with k = rr.

The survival of a couple of type k under neutrality is given by

s◦M ,k = sM ( f2,k ,hk )
∣∣

zm=z = sM

(
f ◦

2,k ,h◦
k

)
= sM

(
f2,rr,hrr

)= sM ,rr, (S2.5.5)

where the first equality follows from substituting equation (S1.4.4a) and from the definition of neutrality (S2.4.5);

the second equality holds because the function sM (S1.4.5a) is the same for all k; the third equality follows from

equation (S2.5.4) and (S2.5.3f); and the last equality follows from (S1.4.4a) with k = rr. Thus, the probabilities

s◦M ,rm and s◦M ,mr featuring in J◦mut (S2.4.6) simplify to

s◦M ,rm = s◦M ,mr = sM ,rr. (S2.5.6)

Analogous reasoning leads to the following expression for the survival of the second-brood offspring of a

couple of type k under neutrality:

s◦2,k = s2( f2,k ,hk )
∣∣

zm=z = s2

(
f ◦

2,k ,h◦
k

)
= s2

(
f2,rr,hrr

)= s2,rr. (S2.5.7)

Neutral effective fertility, F ◦
a,`,i ,k . The nonzero entries in the first two rows of J◦mut (S2.4.6) are effective fertil-

ities (defined in section 1.5) under neutrality. We find explicit expressions for these effective fertilities below.

First, for all `, all i , and all k, the early effective fertility under neutrality, F ◦
1,`,i ,k , simplifies to

F ◦
1,`,i ,k = (

f1σ1,`q`,i ,k (1−p`,i ,k )s1
)∣∣

zm=z

= q`,i ,k f1σ1,`(1−p`,r,rr)s1

= q`,i ,k F1,`,r,rr (S2.5.8)

where the first equality follows from substituting the expression for F1,`,i ,k (S1.5.1) and the definition of neu-

trality (S2.4.5); the second equality follows from (S2.5.2); and the final equality follows from (S1.5.2).

Likewise, for all `, all i , and all k, the late effective fertility under neutrality, F ◦
2,`,i ,k , simplifies to

F ◦
2,`,i ,k = (

f2,kσ2,`q`,i ,k s2,k
)∣∣

zm=z

= q`,i ,kσ2,` f ◦
2,k s◦2,k

= q`,i ,kσ2,` f2,rrs2,rr

= q`,i ,k F2,`,r,rr (S2.5.9)

where we have substituted the expressions for f ◦
2,k and s◦2,k given by equations (S2.5.4) and (S2.5.7), and the

expression for F2,`,r,rr given by (S1.5.4).

Equations (S2.5.8) and (S2.5.9) state that the effective fertility of a young or old couple that has a neutral

mutation equals the corresponding effective fertility of a resident couple multiplied by the probability that the

mutant couple produces an offspring of the relevant genotype and relevant sex.
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Neutral productivity, Π◦
`,i ,k . When simplifying the expression for the selection gradient, it will be useful to

have the expression for the neutral productivity Π◦
`,i ,k of a k-type couple through offspring of sex ` and geno-

type i . To calculate it, we start from the expression for Π`,i ,k (equation (S1.6.1)), evaluate at neutrality, and

simplify using the expressions for the neutral effective fertilities (equations (S2.5.8) and (S2.5.9)) and couple

survival (equation (S2.5.5)) to obtain

Π◦
`,i ,k = (

F1,`,i ,k + sM ,k F2,`,i ,k
)∣∣

zm=z

= F ◦
1,`,i ,k + s◦M ,k F ◦

2,`,i ,k

= q`,i ,k
(
F1,`,r,rr + sM ,rrF2,`,r,rr

)
= q`,i ,kΠ`,r,rr (S2.5.10)

where the last line follows from identifying the expression for the productivity of a couple of type rr through

resident offspring,Π`,r,rr given by equation (S1.6.18). In particular, and because of identity (S1.2.1a) we recover

Π◦
`,r,rr =Π`,r,rr. (S2.5.11)

Neutral mutant submatrix, J◦mut. Putting together our previous results in this subsection 2.5, we write the

neutral mutant submatrix, J◦mut (S2.4.6) as

J◦mut ≡ Jmut|zm=z

=



0 0 q♀,m,rmF1,♀,r,rr q♀,m,mrF1,♀,r,rr q♀,m,rmF2,♀,r,rr q♀,m,mrF2,♀,r,rr

0 0 q♂,m,rmF1,♂,r,rr q♂,m,mrF1,♂,r,rr q♂,m,rmF2,♂,r,rr q♂,m,mrF2,♂,r,rr

0 1
Π♂,r,rr

0 0 0 0

1
Π♀,r,rr

0 0 0 0 0

0 0 sM ,rr 0 0 0

0 0 0 sM ,rr 0 0


. (S2.5.12)

2.6 Reproductive values and stable distribution

Having calculated the neutral mutant submatrix, J◦mut, we are ready to calculate its (dominant) left and right

eigenvectors. These are the vectors v (S2.6.1) and u (S2.6.14) appearing in our expression for the selection

gradient Sζ(z) of a generic trait ζ given by equation (S2.4.4). The biological meaning of these vectors is the

following [1]. The left eigenvector v lists the reproductive values of neutral mutants, with reproductive values

measuring the relative long-term contribution of individuals in a mutant class to the future mutant popula-

tion. The right eigenvector u is the stable class distribution of neutral mutants, which measures the relative

asymptotic distribution of neutral mutants among classes. By the Perron-Frobenius theorem, the vectors u

and v are positive [9]. We will show that the selection gradient (S2.4.4) can be simplified so that it only depends

on two entries of u (namely, u1,rm and u1,mr) and two entries of v (namely, v♀,m and v♂,m). Thus, without loss

of generality, we choose u and v so that u1,rm +u1,mr = 1 (i.e., u1,k is the stable proportion of mutant young

couples of type k) and v♂,m = 1 (i.e., the reproductive value of mutant males is arbitrarily set to one). Doing so

we slightly depart from common use in demographic models, where u is often chosen so that the whole vector
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u is a probability distribution, that is, so that 1ᵀu = 1 (where 1 is a vector of ones), and where v is sometimes

chosen so that the whole vector vᵀu is a probability distribution, that is, so that vᵀu = 1. Regardless, we will

continue referring to the vector u as the stable distribution.

Reproductive values, v. We start by calculating the left eigenvector

vᵀ =
(
v♀,m, v♂,m, v1,rm, v1,mr, v2,rm, v2,mr

)
, (S2.6.1)

giving the neutral reproductive values of mutants in each class. From the definition of a left eigenvector, and

since the leading eigenvalue of J◦mut is one, v is defined by

vᵀJ◦mut = vᵀ. (S2.6.2)

Performing the matrix multiplication stated in (S2.6.2) with J◦mut given by equation (S2.4.6), we obtain the

system of equations

v♀,m = v1,mr

Π◦
♀,r,rr

, (S2.6.3a)

v♂,m = v1,rm

Π◦
♂,r,rr

, (S2.6.3b)

v1,rm = F ◦
1,♀,m,rmv♀,m +F ◦

1,♂,m,rm
v♂,m + s◦M ,rmv2,rm, (S2.6.3c)

v1,mr = F ◦
1,♀,m,mrv♀,m +F ◦

1,♂,m,mr
v♂,m + s◦M ,mrv2,mr, (S2.6.3d)

v2,rm = F ◦
2,♀,m,rmv♀,m +F ◦

2,♂,m,rm
v♂,m, (S2.6.3e)

v2,mr = F ◦
2,♀,m,mrv♀,m +F ◦

2,♂,m,mr
v♂,m. (S2.6.3f)

From these equations we can write down two equivalent expressions for the reproductive values of young

mutant couples (v1,mr and v1,rm) in terms of the reproductive values of mutant unmated reproductives (v♀,m

and v♂,m). First, isolating v1,mr and v1,rm from, respectively, equations (S2.6.3a) and (S2.6.3b), and using

(S2.5.11), we obtain

v1,mr =Π♀,r,rrv♀,m, (S2.6.4a)

v1,rm =Π♂,r,rrv♂,m. (S2.6.4b)

Second, substituting the expressions for the reproductive value of old couples of type rm, v2,rm (S2.6.3e), and

the reproductive value of old couples of type mr, v2,mr (S2.6.3f), into the equations for the reproductive value

of young mutant couples (equations (S2.6.3c) and (S2.6.3d)), rearranging, and using the definition of produc-

tivitiesΠ`,i ,k (S1.6.1), we get

v1,mr =Π◦
♀,m,mrv♀,m +Π◦

♂,m,mr
v♂,m, (S2.6.5a)

v1,rm =Π◦
♀,m,rmv♀,m +Π◦

♂,m,rm
v♂,m. (S2.6.5b)

We can now use expressions (S2.6.4) and (S2.6.5) in order to derive two identities linking the reproductive

values of various classes. We start by equating the right hand sides of the two expressions for v1,mr above
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(equations (S2.6.4a) and (S2.6.5a)), and simplify to obtain(
Π♀,r,rr −Π◦

♀,m,mr

)
v♀,m =Π◦

♂,m,mr
v♂,m(

1−q♀,m,mr
)
Π♀,r,rrv♀,m = q♂,m,mrΠ♂,r,rrv♂,m

Π♀,r,rrv♀,m =Π♂,r,rrv♂,m (S2.6.6)

v1,mr = v1,rm, (S2.6.7)

where the second line follows from substituting the expressions for neutral productivities (S2.5.10); the third

line follows because identity (S1.2.1d) implies 1− q♀,m,mr = q♂,m,mr; and the last line follows from equation

(S2.6.4). Equation (S2.6.6) links the reproductive values of female and male reproductives, and can be inter-

preted as stating that the reproductive value of a mutant reproductive of a given sex is proportional to the

number of resident reproductives of the opposite sex and inversely proportional to the number of resident

reproductives of the same sex (S2.2.7). In turn, equation (S2.6.7) states that a consequence of this is that the

reproductive values of a mutant young couple is the same, whether the female in the couple is mutant (i.e.,

the female is mutant and the male is resident) or the male in the couple is mutant (i.e., the female is resident

and the male is mutant). Although we derived identities (S2.6.6) and (S2.6.7) by equating the expressions for

v1,mr above (equations (S2.6.4a) and (S2.6.5a)) we could have alternatively derived them by equating the two

expressions for v1,rm (equations (S2.6.4b) and (S2.6.5b)) and simplifying in a similar way.

We can now proceed to obtain expressions for the reproductive values in terms of our variables and pa-

rameters. First, because of our choice of letting v♂,m = 1, isolating v♀,m from equation (S2.6.6) leads to

v♂,m = 1, (S2.6.8a)

v♀,m =
Π♂,r,rr

Π♀,r,rr
, (S2.6.8b)

for the reproductive values of unmated mutants. Thus, the reproductive value of unmated mutant females

equals the resident sex ratio (S2.2.7). Second, substituting (S2.6.8) into (S2.6.4) and simplifying, we obtain

v1,rm = v1,mr =Π♂,r,rr, (S2.6.9)

for the reproductive value of young couples. Finally, substituting (S2.6.8) into equations (S2.6.3e) and (S2.6.3f),

using the expressions for neutral reproductive rates (S2.5.9), and simplifying, we obtain

v2,rm = q♀,m,rmF2,♀,r,rr

Π♂,r,rr

Π♀,r,rr
+q♂,m,rmF2,♂,r,rr, (S2.6.10a)

v2,mr = q♀,m,mrF2,♀,r,rr

Π♂,r,rr

Π♀,r,rr
+q♂,m,mrF2,♂,r,rr, (S2.6.10b)

for the reproductive value of old couples.

As stated above, we will later show (in section 2.7) that the generic selection gradient (S2.4.4) can be sim-

plified so that it only depends on two entries of v, namely the reproductive values of unmated females and

males, which in turn depend only on the resident sex ratio (equations (S2.6.8)). We will then use the simplified

notation

v` ≡ v`,m (S2.6.11)
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for ` ∈ {
♀,♂

}
to refer to the reproductive values of unmated individuals. From equations (S2.6.8), (S2.6.11),

and (S2.2.7), we have

v♂ ≡ v♂,m = 1, (S2.6.12a)

v♀ ≡ v♀,m =
Π♂,r,rr

Π♀,r,rr
=

N∗
♂,r

N∗
♀,r

, (S2.6.12b)

which are respectively the neutral reproductive values of unmated (mutant) males and females. So, in our

model, the modulating effect of reproductive value on selection is encapsulated by the sex ratio.

More explicitly, substituting the expression for resident sex-specific productivity (S1.6.18) into (S2.6.12),

via (S1.6.16), the sex-specific reproductive values are given by

v♂ = 1, (S2.6.13a)

v♀ =
σ1,♂ f1(1−p♂,r,rr)s1 +σ2,♂Π2( f2,rr,hrr)

σ1,♀ f1(1−p♀,r,rr)s1 +σ2,♀Π2( f2,rr,hrr)
. (S2.6.13b)

Hence, the reproductive value of females and males is the same (v♀ = v♂ = 1) if both sexes help (G = B, so

p♂,r,rr = p♀,r,rr) and the sex proportion is unbiased in both broods (σa,` = 1/2 for a ∈ {1,2} and ` ∈ {♀,♂}),

for both diploids and haplodiploids. In contrast, females have a higher reproductive value than males (v♀ >
v♂ = 1) if females help more than males (p♂,r,rr < p♀,r,rr) and the sex proportion is unbiased in both broods

(σa,` = 1/2 for a ∈ {1,2} and ` ∈ {♀,♂}), for both diploids and haplodiploids (see also [12, 6]).

Still more explicitly, using Fig. S5 and equations (S1.4.1), (S1.3.5), and (S1.1.5), the reproductive value of

females (S2.6.13b) for each model case is given by

v♀ =



σ1,♂ f1(1−p)s1 +σ2,♂Π2( f2, f1p)

σ1,♀ f1(1−p)s1 +σ2,♀Π2( f2, f1p)
for C ∈ {O,M} and G = B

σ1,♂ f1s1 +σ2,♂Π2( f2, f1σ1p)

σ1,♀ f1(1−p)s1 +σ2,♀Π2( f2, f1σ1p)
for C ∈ {O,M} and G = F

σ1,♂ f1(1−p(x, y))s1 +σ2,♂Π2( f2, f1p(x, y))

σ1,♀ f1(1−p(x, y))s1 +σ2,♀Π2( f2, f1p(x, y))
for C = S and G = B

σ1,♂ f1s1 +σ2,♂Π2( f2, f1σ1p(x, y))

σ1,♀ f1(1−p(x, y))s1 +σ2,♀Π2( f2, f1σ1p(x, y))
for C = S and G = F.

Stable distribution, u. Let us now calculate the stable distribution (i.e., the right eigenvector)

uᵀ =
(
u♀,m,u♂,m,u1,rm,u1,mr,u2,rm,u2,mr

)
. (S2.6.14)

From the definition of a right eigenvector, and since the leading eigenvalue of J◦mut is equal to one, we have

J◦mutu = u. (S2.6.15)
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Performing the matrix multiplication stated in (S2.6.15) with J◦mut given by (S2.4.6), we obtain the following

system of linear equations

u♀,m = F ◦
1,♀,m,rmu1,rm +F ◦

2,♀,m,rmu2,rm +F ◦
1,♀,m,mru1,mr +F ◦

2,♀,m,mru2,mr, (S2.6.16a)

u♂,m = F ◦
1,♂,m,rm

u1,rm +F ◦
2,♂,m,rm

u2,rm +F ◦
1,♂,m,mr

u1,mr +F ◦
2,♂,m,mr

u2,mr, (S2.6.16b)

u1,rm =
u♂,m

Π◦
♂,r,rr

, (S2.6.16c)

u1,mr =
u♀,m

Π◦
♀,r,rr

, (S2.6.16d)

u2,rm = s◦M ,rmu1,rm, (S2.6.16e)

u2,mr = s◦M ,mru1,mr. (S2.6.16f)

We manipulate these equations in a similar way to what we did for the system describing the reproductive

values of our model. First, we isolate u♂,m and u♀,m from, respectively, equations (S2.6.16c) and (S2.6.16c),

and use (S2.5.11) to obtain

u♀,m =Π♀,r,rru1,mr. (S2.6.17a)

u♂,m =Π♂,r,rru1,rm, (S2.6.17b)

Second, we substitute (S2.6.16e) and (S2.6.16f) into (S2.6.16a) and (S2.6.16b), and use the definition of the

productivitiesΠ`,i ,k (S1.6.1) to get

u♀,m =Π◦
♀,m,rmu1,rm +Π◦

♀,m,mru1,mr, (S2.6.18a)

u♂,m =Π◦
♂,m,rm

u1,rm +Π◦
♂,m,mr

u1,mr. (S2.6.18b)

Finally, we use expressions (S2.6.17) and (S2.6.18) to derive an identity linking the stable proportions of young

couples of types rm and mr. We start by equating the right hand sides of the two expressions for u♀,m above

(equations (S2.6.17a) and (S2.6.18a)), and simplify to obtain

(
Π♀,r,rr −Π◦

♀,m,mr

)
u1,mr =Π◦

♀,m,rmu1,rm(
1−q♀,m,mr

)
Π♀,r,rru1,mr = q♀,m,rmΠ♀,r,rru1,rm

q♂,m,mru1,mr = q♀,m,rmu1,rm

u1,mr

u1,rm
= q♀,m,rm

q♂,m,mr

(S2.6.19)

where the second line follows from substituting the expressions for neutral productivities (S2.5.10); the third

line follows because identity (S1.2.1d) implies 1− q♀,m,mr = q♂,m,mr; and the last line rearranges, where the

ratio of the transmission probabilities is the one given by (S1.2.2a).

As stated above, we will later (section 2.7) show that the selection gradient (S2.4.4) can be simplified so that

it only depends on two entries of u, namely the stable proportions of mutant young couples of either type,

which in turn depend only on the transmission probabilities (equations (S2.6.20c) and (S2.6.20d)). Thus, it

will be convenient to normalize the right eigenvector u in such a way that u1,rm +u1,mr = 1, so that u1,k refers

to the proportion of mutant young couples that are of type k. Imposing this constraint, equations (S2.6.19),

29



(S2.6.17), (S2.6.16e), and (S2.6.16f) lead to

u♀,m = q♀,m,rm

q♀,m,rm +q♂,m,mr

Π♀,r,rr, (S2.6.20a)

u♂,m =
q♂,m,mr

q♀,m,rm +q♂,m,mr

Π♂,r,rr, (S2.6.20b)

u1,rm =
q♂,m,mr

q♀,m,rm +q♂,m,mr

, (S2.6.20c)

u1,mr =
q♀,m,rm

q♀,m,rm +q♂,m,mr

, (S2.6.20d)

u2,rm =
q♂,m,mr

q♀,m,rm +q♂,m,mr

sM ,rr, (S2.6.20e)

u2,mr =
q♀,m,rm

q♀,m,rm +q♂,m,mr

sM ,rr, (S2.6.20f)

where we have also used the fact that s◦M ,rm = s◦M ,mr = sM ,rr (S2.5.6).

Since the simplified selection gradient will only depend u1,rm and u1,mr, we will henceforth use the simpli-

fied notation

uk ≡ u1,k (S2.6.21)

for k ∈ {rm,mr}, and term the vector

ũᵀ = (
u♀,u♂

)
(S2.6.22)

the stable sex distribution of a neutral mutant allele among young parents, which in turn depends only on the

transmission asymmetry. From equations (S2.6.20c), (S2.6.20d), (S2.6.21), and (S2.6.22), we have

u♀ ≡ umr =
q♀,m,rm

q♀,m,rm +q♂,m,mr

, (S2.6.23a)

u♂ ≡ urm =
q♂,m,mr

q♀,m,rm +q♂,m,mr

, (S2.6.23b)

as expressions for the neutral stable proportions of couples of type rm and mr. So, the modulating effect of the

stable distribution on selection in our model is encapsulated by the transmission asymmetry.

Link between the stable distribution, u, and “genetic reproductive values”. Because of our choice regarding

the normalization of the leading eigenvector u, the stable proportions (S2.6.23) give a well-defined probability

distribution. For diploids (P = D) and from Fig. (S4), the stable sex distribution is

ũᵀ = (
u♀,u♂

)= (
u1,mr,u1,rm

)= (1/2,1/2) , (S2.6.24)

while for haplodiploids (P = HD) and from Fig. (S4), it is

ũᵀ = (
u♀,u♂

)= (
u1,mr,u1,rm

)= (2/3,1/3) . (S2.6.25)

Hence, in a diploid population, a neutral mutation is asymptotically equally likely to be in a young mother or

a young father, but in a haplodiploid population it is twice as likely to be in a young mother than in a young

father. The asymmetry in the haplodiploid case is a consequence of the sex-related transmission asymmetry

of such genetic system (see equation (S2.6.19)).
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The entries of the stable sex distribution (u` for ` ∈ {
♀,♂

}
; equations (S2.6.24) and (S2.6.25)) coincide with

the “genetic reproductive values” or “sex-specific reproductive values” that often appear in the literature of

social insects and social evolution ([13, 14, 15, 16]; see also pp. 39-41 of [17] and pp. 190-191 of [18]). Such

genetic reproductive values are typically used to weigh sex-specific fitness effects so that allele frequency does

not change without selection. They are interpreted as describing that, irrespectively of the sex ratio, in a hap-

lodiploid population a male is worth half as much as a female in transmitting genes because he can pass on

his genes only through daughters, while a female passes on her genes through both daughters and sons. Ge-

netic reproductive values are often calculated as the normalized dominant left eigenvector of a right stochastic

(rows sum to one) “gene flow” matrix (A on p. 151 of [15]) or as the normalized dominant right eigenvector of

a left stochastic (columns sum to one) matrix (P on p. 40 of [17]).

The stable sex distribution can also be obtained as follows. Let us define the transmission matrix

Q =
 q♀,♀ q♀,♂

q♂,♀ q♂,♂

≡
 q♀,m,mr q♀,m,rm

q♂,m,mr q♂,m,rm

 (S2.6.26)

where q`,`′ stands for the probability that a mutant parent of sex `′ transmits its mutant allele to an offspring

of sex ` when the mutant allele is rare (and hence the second parent is of resident genotype). By (S1.2.1d), Q

is left stochastic (i.e., its columns sum to one) and hence its dominant eigenvalue is one. Direct calculation

shows that ũᵀ = (
u♀,u♂

)≡ (
u1,mr,u1,rm

)
is a dominant right eigenvector of Q. Note also that since ũ is both a

right eigenvector of Q and a probability distribution, we have that

∑
k∈{rm,mr}

uk q`,m,k = ∑
k∈{♀,♂}

uk q`,k = u` ∀` ∈ {♀,♂}, (S2.6.27)

that is, the neutral asymptotic probability that an individual of sex ` is a mutant is also equal to u`. For diploids

(P = D) and from Fig. (S4),

Q =
1/2 1/2

1/2 1/2

 , (S2.6.28)

for which equation (S2.6.24) is a dominant right eigenvector. For haplodiploids (P = HD) and from Fig. (S4),

Q =
1/2 1

1/2 0

 , (S2.6.29)

for which equation (S2.6.25) is a dominant right eigenvector.

Thus, for the specific values of the transmission probabilities under diploidy or haploidiploidy, our trans-

mission matrix Q coincides with the matrix P of [17] (p. 40) and with the transpose of the gene-flow matrix A

of [15] (p. 151). In any case, the (2/3,1/3) weights can be interpreted as the stable sex distribution.

2.7 Selection gradient (generic, simplified form)

Having calculated the left eigenvector v and right eigenvector u associated to the leading eigenvalue of J◦mut,

we can proceed to simplify the selection gradient Sζ(z) of a generic trait ζ (where ζ ∈ {
p, z

}
for offspring and

maternal control, whereas ζ ∈ {
x, y, z

}
for shared control).
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Our starting point is the generic expression of the selection gradient of ζ given by (S2.4.4). Taking the partial

derivatives of the elements of the mutant submatrix Jmut (S2.3.4) with respect to the mutant trait value ζm, and

since the resident productivities Π♀,r,rr and Π♂,r,rr appearing in the first two columns of Jmut are independent

of ζm, we have

Sζ(z) = 1

vᵀu

∑
k∈{rm,mr}

v2,k
∂sM ,k

∂ζm

∣∣∣∣
zm=z

u1,k +
∑

`∈{♀,♂}

v`,m

∑
a∈{1,2}

∂Fa,`,m,k

∂ζm

∣∣∣∣
zm=z

ua,k

 . (S2.7.1)

From equations (S2.6.16e) and (S2.6.16f), u2,k = s◦M ,k u1,k holds for k ∈ {rm,mr}. Substituting this expression

into (S2.7.1) and collecting the u1,k ’s yields

Sζ(z) = 1

vᵀu

∑
k∈{rm,mr}

v2,k
∂sM ,k

∂ζm

∣∣∣∣
zm=z

+ ∑
`∈{♀,♂}

v`,m

[
∂F1,`,m,k

∂ζm

∣∣∣∣
zm=z

+ ∂F2,`,m,k

∂ζm

∣∣∣∣
zm=z

s◦M ,k

]u1,k . (S2.7.2)

Also, from equations (S2.6.3e) and (S2.6.3f), v2,k = F ◦
2,♀,m,k v♀,m+F ◦

2,♂,m,k
v♂,m hold for k ∈ {rm,mr}. Substitut-

ing this expression into equation (S2.7.2) and collecting the v`,m’s yields

Sζ(z) = 1

vᵀu

∑
`∈{♀,♂}

v`,m

∑
k∈{rm,mr}

[
∂F1,`,m,k

∂ζm

∣∣∣∣
zm=z

+F ◦
2,`,m,k

∂sM ,k

∂ζm

∣∣∣∣
zm=z

+ ∂F2,`,m,k

∂ζm

∣∣∣∣
zm=z

s◦M ,k

]
u1,k . (S2.7.3)

Finally, from the definition of productivitiesΠ`,i ,k (S1.6.1), by using the simplified notation for sex-specific re-

productive values (S2.6.11) and stable sex distribution (S2.6.21), and by the product rule of derivatives, equa-

tion (S2.7.3) can be more succinctly written as

Sζ(z) = 1

vᵀu

∑
`∈{♀,♂}

∑
k∈{rm,mr}

v`
∂Π`,m,k

∂ζm

∣∣∣∣
zm=z

uk . (S2.7.4)

Since vᵀu > 0 holds, the selection gradient of ζ is positive (i.e., ζ is favored by selection) if and only if∑
k∈{rm,mr}

uk

∑
`∈{♀,♂}

∂Π`,m,k

∂ζm

∣∣∣∣
zm=z

v` > 0. (S2.7.5)

This condition has an intuitive interpretation: a trait ζ is favored by selection if and only if the effect of a

mutation in the trait on the mutant productivity of a couple, averaged over the stable sex distribution of parents

and weighted by the sex-specific reproductive values of offspring, is positive.

In addition to providing a natural interpretation for the action and direction of natural selection, equation

(S2.7.4) is convenient for our subsequent analysis because all important terms (those appearing on the left-

hand side of (S2.7.5)) are written in terms of (marginal) productivities, sex-specific reproductive values, and

the stable sex distribution, thus abstracting away the additional complication of having age classes for cou-

ples. Note also that the sex-specific reproductive values (S2.6.13) depend in general on the sex proportions

of the two broods, on whether both sexes help or only females do, and on the evolving traits, but not on the

transmission probabilities and hence on the genetic system. In contrast, the stable sex distribution (S2.6.23)

depends exclusively on the transmission probabilities and hence on the genetic system but not on any other

feature of the model.

2.8 Selection gradient of traits affecting helping

2.8.1 Derivation of the general expression

General expression. Consider a trait ζ affecting the probability of helping, that is, either ζ = p for model

cases of offspring and maternal control, or ζ ∈ {
x, y

}
for model cases of shared control. In this section, we
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obtain expressions for the selection gradient of these traits by explicitly calculating the derivatives appearing

in equation (S2.7.4).

Evaluating the productivity Π`,i ,k (S1.6.17) at i = m, and differentiating the resulting expression with re-

spect to ζm using the chain rule, we obtain

∂Π`,m,k

∂ζm

∣∣∣∣
zm=z

=
(
∂

∂ζm
q`,m,k

[
f1σ1,`(1−p`,m,k )s1 +σ2,`Π2,k

])∣∣∣∣
zm=z

= q`,m,k

(
− f1σ1,`

∂p`,m,k

∂ζm

∣∣∣∣
zm=z

s1 +σ2,`
∂Π2,k

∂hk

∣∣∣∣
zm=z

× ∂hk

∂ζm

∣∣∣∣
zm=z

)

= q`,m,k

− f1σ1,`
∂p`,m,k

∂ζm

∣∣∣∣
zm=z

s1 +σ2,`
∂Π2

∂h
( f2,h)× f1

∑
`′∈{♀,♂}

σ1,`′
∑

i ′∈{r,m}

q`′,i ′,k
∂p`′,i ′,k
∂ζm

∣∣∣∣
zm=z


= f1q`,m,k

−σ1,`
∂p`,m,k

∂ζm

∣∣∣∣
zm=z

s1 +σ2,`
∂Π2

∂h
( f2,h)× ∑

`′∈{♀,♂}

σ1,`′
∑

i ′∈{r,m}

q`′,i ′,k
∂p`′,i ′,k
∂ζm

∣∣∣∣
zm=z

 ,

(S2.8.1)

where we have used the expression for hk given in (S1.3.3b), and the fact that the functional form for late pro-

ductivity Π2,k is the same for all types k (equation (S1.6.16)), which together with our notational conventions

allows us to write

∂Π2,k

∂hk

∣∣∣∣
zm=z

= ∂Π2

∂h
( f ◦

2,k ,h◦
k ) = ∂Π2

∂h
( f2,h).

Substituting (S2.8.1) into (S2.7.4) and rearranging, we obtain

Sζ(z) = 1

vᵀu
f1

(
−ιs1 +κ∂Π2

∂h
( f2,h)

)
, (S2.8.2)

where

ι= ∑
`∈{♀,♂}

σ1,`

∑
k∈{rm,mr}

uk q`,m,k
∂p`,m,k

∂ζm

∣∣∣∣
zm=z

v`, (S2.8.3a)

κ= ∑
`∈{♀,♂}

σ1,`

∑
`′∈{♀,♂}

σ2,`′
∑

k∈{rm,mr}
uk

∑
i ′∈{r,m}

q`,i ′,k
∂p`,i ′,k
∂ζm

∣∣∣∣
zm=z

q`′,m,k v`′ . (S2.8.3b)

We call coefficients ι and κ the structure coefficients. Since σᵀ
1 and ũᵀ are probability distributions, (S2.8.3a)

shows that ι is the effect of a mutation on helping evaluated at neutrality (∂p`,m,k /∂ζm|zm=z), averaged over the

sexes of parents (uk ) and of potentially helping offspring (σ1,`), and weighted by the probability that a sex-`

potentially helping offspring has the mutation (q`,m,k ) and by such offspring’s reproductive value (v`). Thus,

ι is a weighted average of a helping mutation’s phenotypic effect, with the weight given by the probability that

candidate helpers have the mutation and by their reproductive value. Similarly, (S2.8.3b) shows that κ is the

effect of a mutation on helping evaluated at neutrality (∂p`,i ′,k /∂ζm|zm=z), averaged over the sexes of parents

(uk ), of potentially helping offspring (σ1,`), and of potentially helped offspring (σ2,`), and over the probability

that a potentially helping offspring has the mutation (q`,i ′,k ), and weighted by the probability that a sex-`′

potentially helped offspring has the mutation (q`′,m,k ) and by such offspring’s reproductive value (v`′ ). Thus,

κ is a weighted average of a helping mutation’s phenotypic effect, with the weight given by the probability that

candidate recipients of help have the mutation and by their reproductive value.

We now provide an interpretation for the remaining terms in large parentheses in equation (S2.8.2).
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Marginal cost and benefit of helping. The factors −s1 and ∂Π2( f2,h)/∂h appearing in (S2.8.2) have immedi-

ate interpretations in terms of marginal effects of the expected number of helpers on a couple’s productivity.

First, ∂Π2( f2,h)/∂h is the marginal effect of the expected number of helpers on the late productivity of a cou-

ple. Second, s1 is the marginal effect of the expected number of helpers on the early productivity of a couple

(as it can be verified from equation (S1.6.9)). To underline the fact that the marginal effect on early productiv-

ity is always negative (because s1 > 0), while the marginal effect on late productivity is always positive (since,

given our assumptions on the vital rates given in section 1.4,Π2 is increasing in h) and for subsequent use, we

introduce the following definitions and notation. We define

C =−dΠ1(h)

dh
= s1, (S2.8.4)

as the (marginal) cost of helping, and

B = ∂Π2

∂h
( f2(z),h). (S2.8.5)

as the (marginal) benefit of helping or the marginal late productivity of helping.

Note that the marginal cost of helping C equals the constant s1 for all the model cases we consider. In

contrast, the marginal benefit of helping is a function of the evolving traits and of the neutral expected number

of helpers h and hence takes a different form for each model case, depending on who controls the helping

probability and on the sex of the helpers. To make this dependence explicit, hereafter we write B C,G for the

benefit of helping when help control is of type C (where C ∈ {O,M,S}) and when the helpers’ sex is G (where

G ∈ {B,F}). Explicitly, using equations (S1.3.5) and (S1.1.5), the marginal benefit of helping (S2.8.5) for each

model case is given by

B C,G =



∂Π2

∂h
( f2, f1p) for C ∈ {O,M} and G = B

∂Π2

∂h
( f2, f1σ1p) for C ∈ {O,M} and G = F

∂Π2

∂h
( f2, f1p(x, y)) for C = S and G = B

∂Π2

∂h
( f2, f1σ1p(x, y)) for C = S and G = F.

(S2.8.6)

Critical benefit-cost ratio. With the above definitions of helping cost and benefit, equation (S2.8.2) becomes

Sζ(z) = 1

vᵀu
f1 (−ιC +κB) . (S2.8.7)

Since f1/vᵀu > 0, the selection gradient of ζ is positive, and ζ is under positive directional selection when

−ιC +κB > 0, (S2.8.8)

or equivalently,

B

C
>

(
B

C

)∗
if κ> 0, or (S2.8.9a)

B

C
<

(
B

C

)∗
if κ< 0 (S2.8.9b)
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where the critical benefit-cost ratio (B/C )∗ equals the ratio of the structure coefficients ι and κ (S2.8.3):(
B

C

)∗
= ι

κ
. (S2.8.10)

The case κ> 0 holds when the trait is the helping probability or maternal influence (ζ ∈ {p, x}) because in that

case ∂p/∂ζ> 0. In turn, the case κ< 0 holds when the trait is offspring resistance (ζ= y) because in that case

∂p/∂ζ< 0.

As with the marginal benefit of helping B , the structure coefficients ι and κ depend on who controls the

helping probability (C) and the helpers’ sex (G). To make this dependence explicit, and similarly to how we

did for the benefit of helping, hereafter we write SC,G
ζ

, ιC,G
ζ

, κC,G
ζ

, and (B/C )∗
ζ

C,G for the selection gradient, the

structure coefficients, and the critical benefit-cost ratio for trait ζ, under help control C and helpers’ sex G.

2.8.2 Derivation for each model case

We now obtain explicit expressions for the structure coefficients and the critical benefit-cost ratios under the

model cases we consider.

Offspring control, both sexes help (O-B). For offspring control, ζ= p, and hence ζm = pm. Then, in the case

of offspring control, and if both sexes help (see Fig. S5)

∂p`,i ,k

∂pm

∣∣∣∣
zm=z

= [i = m], ∀k ∈ {rm,mr} and ∀` ∈ {♀,♂}, (S2.8.11)

where [ ] is the Iverson bracket, such that

[P ] =


1 if P is true

0 otherwise.
(S2.8.12)

Substituting (S2.8.11) into (S2.8.3) and simplifying using equation (S2.6.27) yields:

ιO,B
p = ∑

`∈{♀,♂}

σ1,`u`v`, (S2.8.13a)

κO,B
p = ∑

`∈{♀,♂}

σ1,`

∑
`′∈{♀,♂}

σ2,`′
∑

k∈{rm,mr}
uk q`,m,k q`′,m,k v`′ . (S2.8.13b)

We will provide an interpretation of ιC,G
ζ

and κC,G
ζ

later (section 3.2.4), which applies to all the cases we consider

and which recovers an inclusive fitness interpretation.

The critical benefit-cost ratio is then given by

(
B

C

)∗O,B

p
=

∑
`∈{♀,♂}σ1,`u`v`∑

`∈{♀,♂}σ1,`
∑
`′∈{♀,♂}σ2,`′

∑
k∈{rm,mr} uk q`,m,k q`′,m,k v`′

. (S2.8.14)

Offspring control, only females help (O-F). For offspring control, but now if only females help, we have (see

Fig. S5)

∂p`,i ,k

∂pm

∣∣∣∣
zm=z

= [`= ♀ and i = m], ∀k ∈ {rm,mr}. (S2.8.15)
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Substituting this expression into equation (S2.8.3) and simplifying using equation (S2.6.27) yields:

ιO,F
p =σ1,♀u♀v♀, (S2.8.16a)

κO,F
p =σ1,♀

∑
`′∈{♀,♂}

σ2,`′
∑

k∈{rm,mr}
uk q♀,m,k q`′,m,k v`′ . (S2.8.16b)

The critical benefit-cost ratio thus reduces to(
B

C

)∗O,F

p
= u♀v♀∑

`′∈{♀,♂}σ2,`′
∑

k∈{rm,mr} uk q♀,m,k q`′,m,k v`′
. (S2.8.17)

Maternal control, both sexes help (M-B). For maternal control with both sexes helping, we have (see Fig. S5)

∂p`,i ,k

∂pm

∣∣∣∣
zm=z

= [k = mr] ∀` ∈ {♀,♂} and ∀i ∈ {r,m}. (S2.8.18)

Substituting this expression into (S2.8.3) yields:

ιM,B
p = umr

∑
`∈{♀,♂}

σ1,`q`,m,mrv`, (S2.8.19a)

κM,B
p = umr

∑
`∈{♀,♂}

σ1,`

∑
`′∈{♀,♂}

σ2,`′
∑

i ′∈{r,m}

q`,i ′,mrq`′,m,mrv`′

= umr
∑

`∈{♀,♂}

σ1,`

∑
`′∈{♀,♂}

σ2,`′q`′,m,mrv`′

= umr
∑

`′∈{♀,♂}

σ2,`′q`′,m,mrv`′ , (S2.8.19b)

where we have used identities (S1.2.1c) and (S1.1.3).

The critical benefit-cost ratio is then(
B

C

)∗M,B

p
=

∑
`∈{♀,♂}σ1,`q`,m,mrv`∑
`′∈{♀,♂}σ2,`′q`′,m,mrv`′

. (S2.8.20)

Maternal control, only females help (M-F). For maternal control of the helping trait and if only females help,

we have (see Fig. S5)

∂p`,i ,k

∂pm

∣∣∣∣
zm=z

= [k = mr and `= ♀] ∀i ∈ {r,m}. (S2.8.21)

Following the same steps as in the previous case (M-B), we obtain

ιM,F
p =σ1,♀umrq♀,m,mrv♀, (S2.8.22a)

κM,F
p =σ1,♀umr

∑
`′∈{♀,♂}

σ2,`′q`′,m,mrv`′ , (S2.8.22b)

with the critical benefit-cost ratio simplifying to

(
B

C

)∗M,F

p
= q♀,m,mrv♀∑

`′∈{♀,♂}σ2,`′q`′,m,mrv`′
. (S2.8.23)

Shared control, both sexes help (S-B). Consider now shared control, so that ζ ∈ {
x, y

}
where x is maternal

influence and y is offspring resistance.
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Let us first calculate the structure coefficients and the critical benefit-cost ratio for maternal influence x. If

both sexes help, then (see Fig. S5):

∂p`,i ,k

∂xm

∣∣∣∣
zm=z

= ∂p

∂x
(x, y)[k = mr] ∀` ∈ {♀,♂} and ∀i ∈ {r,m}. (S2.8.24)

Substituting this expression into equation (S2.8.3) and simplifying following the same steps as when calculat-

ing the coefficients for the case M-B yields:

ιS,B
x = ∂p

∂x
(x, y)ιM,B

p , (S2.8.25a)

κS,B
x = ∂p

∂x
(x, y)κM,B

p , (S2.8.25b)

where ιM,B
p and κM,B

p are as given by equation (S2.8.19). Hence, using (S2.8.7), it follows that

SS,B
x (z) = ∂p

∂x
(x, y)SM,B

p (z). (S2.8.26)

Moreover, the critical benefit-cost ratio for maternal influence x is(
B

C

)∗S,B

x
=

(
B

C

)∗M,B

p
, (S2.8.27)

where (B/C )∗
M,B

p is the critical benefit-cost ratio for p for the case of maternal control and helpers from both

sexes, as given by equation (S2.8.20).

Let us now calculate the structure coefficients and critical benefit-cost ratio for offspring resistance y . If

both sexes help, then (see Fig. S5):

∂p`,i ,k

∂ym

∣∣∣∣
zm=z

= ∂p

∂y
(x, y)[i = m] ∀k ∈ {rm,mr} and ∀` ∈ {♀,♂}. (S2.8.28)

Substituting this expression into (S2.8.3) and simplifying following the same steps as when calculating the

coefficients for the case O-B yields:

ιS,B
y = ∂p

∂y
(x, y)ιO,B

p , (S2.8.29a)

κS,B
y = ∂p

∂y
(x, y)κO,B

p , (S2.8.29b)

where ιO,B
p and κO,B

p are as given by equation (S2.8.13). Hence, using (S2.8.7), it follows that

SS,B
y (z) = ∂p

∂y
(x, y)SO,B

p (z). (S2.8.30)

Moreover, the critical benefit-cost ratio for offspring resistance y is(
B

C

)∗S,B

y
=

(
B

C

)∗O,B

p
, (S2.8.31)

where (B/C )∗
O,B

p is the critical benefit-cost ratio for p for the case of offspring control and helpers from both

sexes, as given by equation (S2.8.14).

Shared control, only females help (S-F). For maternal influence x, when only females help, we have (see Fig.

S5)

∂p`,i ,k

∂xm

∣∣∣∣
zm=z

= ∂p

∂x
(x, y)[k = mr and `= ♀] ∀i ∈ {r,m}. (S2.8.32)
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Substituting this expression into (S2.8.3) and simplifying following the same steps as when calculating the

coefficients for the case M-F yields:

ιS,F
x = ∂p

∂x
(x, y)ιM,F

p , (S2.8.33a)

κS,F
x = ∂p

∂x
(x, y)κM,F

p , (S2.8.33b)

where ιM,F
p and κM,F

p are as given by equation (S2.8.22). Hence, using (S2.8.7), it follows that

SS,F
x (z) = ∂p

∂x
(x, y)SM,F

p (z). (S2.8.34)

Moreover, we can write the critical benefit-cost ratio for maternal influence x as(
B

C

)∗S,F

x
=

(
B

C

)∗M,F

p
, (S2.8.35)

where (B/C )∗
M,F

p is the critical benefit-cost ratio for p for the case of maternal control when only females help,

as given by equation (S2.8.23).

For offspring resistance y , we also have (see Fig. S5)

∂p`,i ,k

∂ym

∣∣∣∣
zm=z

= ∂p

∂y
(x, y)[`= ♀ and i = m] for all k ∈ {rm,mr}. (S2.8.36)

Substituting this expression into (S2.8.3) and simplifying following the same steps as when calculating the

coefficients for the case O-F yields:

ιS,F
y = ∂p

∂y
(x, y)ιO,F

p , (S2.8.37a)

κS,F
y = ∂p

∂y
(x, y)κO,F

p , (S2.8.37b)

where ιO,F
p and κO,F

p are as given by equation (S2.8.16). Hence, using (S2.8.7), it follows that

SS,F
y (z) = ∂p

∂y
(x, y)SO,F

p (z). (S2.8.38)

Moreover, we can write the critical benefit-cost ratio for offspring resistance y as(
B

C

)∗S,F

y
=

(
B

C

)∗O,F

p
, (S2.8.39)

where (B/C )∗
O,F

p is the critical benefit-cost ratio for p for the case of offspring control when only females help,

as given by equation (S2.8.17).

2.8.3 Summary

Summarizing, for model cases of offspring or maternal control of helping, the selection gradient of p is

SC,G
p (z) = 1

vᵀu
f1

(
−ιC,G

p C +κC,G
p B

)
, (S2.8.40)

for C ∈ {O,M} and G ∈ {B,F}. The structure coefficients ιC,G
p and κC,G

p are listed in Fig. S7A. This follows from

(S2.8.7), (S2.8.13), (S2.8.16), (S2.8.19), and (S2.8.22).

For model cases of shared control, the selection gradients of x and y are

SS,G
x (z) = ∂p

∂x
(x, y)SM,G

p (z) (S2.8.41a)

SS,G
y (z) = ∂p

∂y
(x, y)SO,G

p (z), (S2.8.41b)

for G ∈ {B,F}. This follows from (S2.8.26), (S2.8.30), (S2.8.34), and (S2.8.38).
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2.9 Selection gradient of reproductive effort

Finally, let us calculate the selection gradient of reproductive effort, ζ = z, using equation (S2.7.4). Evaluat-

ing the expression for productivity Π`,i ,k (S1.6.17) at i = m, and differentiating the resulting expression with

respect to zm using the chain rule, we obtain

∂Π`,m,k

∂zm

∣∣∣∣
zm=z

=
(
∂

∂zm
q`,m,k

[
σ1,` f1(1−p`,m,k )s1 +σ2,`Π2,k

])∣∣∣∣
zm=z

= q`,m,kσ2,`
∂Π2,k

∂ f2,k

∣∣∣∣
zm=z

∂ f2,k

∂zk

∣∣∣∣
zm=z

∂zk

∂zm

∣∣∣∣
zm=z

= q`,m,kσ2,`
∂Π2

∂ f2
( f2,h)

d f2

dz
(z)[k = mr], (S2.9.1)

where the last equality follows from our assumptions on the functional form of the late productivity and late

fertility of a couple (equations (S1.6.16) and (S1.4.1)) and from differentiating zk with respect to the mutant

trait. Substituting (S2.9.1) into (S2.7.4) and simplifying, we obtain

Sz (z) = 1

vᵀu

∂Π2

∂ f2
( f2,h)

d f2

dz
(z)umr

∑
`′∈{♀,♂}

σ2,`′q`′,m,mrv`′ . (S2.9.2)

The selection gradient of reproductive effort is a product of factors that can interpreted similarly as for

the selection gradient of traits affecting helping. First, this selection gradient is proportional to the marginal

productivity of late fertility

D = ∂Π2

∂ f2
( f2,h), (S2.9.3)

that is, the marginal effect on a couple’s lifetime productivity from a marginal increase in late fertility: since

early productivity is independent from late fertility, the marginal effect on lifetime productivity from a marginal

increase in late fertility equals the marginal effect on late productivity. As with the marginal benefit of helping

(S2.8.6), the marginal productivity of late fertility depends on who controls the helping probability and on the

sex of helpers via the neutral expected number of helpers, h. Thus, we follow a similar notational conven-

tion and write DC,G for the marginal productivity of late fertility when help control is of type C and when the

helpers’ sex is G. Specifically, we have

DC,G =



∂Π2

∂ f2
( f2(z), f1p) for C ∈ {O,M} and G = B

∂Π2

∂ f2
( f2(z), f1σ1p) for C ∈ {O,M} and G = F

∂Π2

∂ f2
( f2(z), f1p(x, y)) for C = S and G = B

∂Π2

∂ f2
( f2(z), f1σ1p(x, y)) for C = S and G = F

. (S2.9.4)

Second, this selection gradient is proportional to the structure coefficient

κC,G
z = umr

∑
`′∈{♀,♂}

σ2,`′q`′,m,mrv`′ . (S2.9.5)

Although this structure coefficient has a similar form to the structure coefficient κM,B
p (S2.8.19b), reproductive

values v`′ depend on help control C and the helpers’ sex G (S2.6.13), so κC,G
z and κM,B

p may be different.
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With these two notational conventions, the selection gradient of reproductive effort for each model case is

given by

SC,G
z (z) = 1

vᵀu

d f2

dz
(z)κC,G

z DC,G. (S2.9.6)

Since the factors f1/vᵀu, κC,G
z , and d f2(z)/dz are all strictly positive (e.g., (S1.4.3)), a necessary and sufficient

condition for the selection gradient of reproductive effort z to be positive, and for z to be under positive direc-

tional selection is that the marginal productivity of fertility is positive, that is that

DC,G > 0 (S2.9.7)

holds.
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3 Inclusive fitness effects

Inclusive fitness describes selection in terms of how the phenotype of individual actors affects the personal

fitness of recipients [19, 20, 21, 22]. In general, the inclusive fitness effect is the sum of the effects of a focal

individual’s phenotype on the fitness of recipients, where each effect is weighted by the relatedness of the actor

to the recipient and by the reproductive value of the recipient.

In this section, we show that the sign of the selection gradient of all the traits in our model can be rewrit-

ten as the sign of an inclusive fitness effect. To do this, we proceed in six steps. First, we define social classes,

actors, and recipients within a given nest, and introduce notation to refer to them (Social classes, actors, and

recipients; section 3.1). Second, we define reproductive worth, which is an inclusive fitness measure of repro-

ductive valuation of social partners, and show that the structure coefficients can be written in terms of such

measure (Reproductive worth; section 3.2). Third, we define relative reproductive worth, which is a measure of

relative reproductive valuation of social partners (Relative reproductive worth; section 3.3). Fourth, we define

personal fitness functions to calculate inclusive fitness benefits and costs for a trait affecting helping (Individ-

ual cost and benefit of helping; section 3.4). Fifth, we write the selection gradient of a trait affecting helping

in terms of the trait’s inclusive fitness effect (Inclusive fitness effect for a trait affecting helping and Hamilton’s

rule; section 3.5). Finally, we define the inclusive fitness benefit for reproductive effort and write this trait’s

selection gradient in terms of the trait’s inclusive fitness effect (Inclusive fitness effect for reproductive effort;

section 3.6).

3.1 Social classes, actors, and recipients

In the following, we introduce some notation to refer to the different sets of individuals (or social classes) of a

“focal” nest in our model, and to distinguish between sets comprising actors and sets comprising recipients.

Social classes. We denote by M the singleton whose only member is the mother of the nest; and by Oa` the

set of sex-` offspring produced in brood a. The set of a-th brood offspring is denoted by Oa , where Oa =
Oa♀∪Oa♂. We illustrate these social classes in Fig. S6.

Actors. Actors are individuals that genetically control the trait ζ in consideration. In our model the set of

actors A is thus either (i) the mother’s singleton M (if helping is under maternal control, C = M; or if helping is

under shared control, C = S, and the trait is maternal influence, ζ= x), (ii) the set of first-brood offspring O1 (if

both sexes help, G = B, and either helping is under offspring control, C = O, or helping is under shared control,

C = S, and the trait is resistance, ζ= y), or (iii) the set of first-brood female offspring O1♀ (if only females help,

G = F, and either helping is under offspring control, C = O, or helping is under shared control, C = S, and the

trait is resistance, ζ= y). In short,

A =


M if C = M or (C = S and ζ= x)

O1 if G = B and [C = O or (C = S and ζ= y)]

O1♀ if G = F and [C = O or (C = S and ζ= y)].

(S3.1.1)
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BA

Figure S6: Social classes. Panels A and B show Venn diagrams illustrating the social classes in a given nest

resulting in our model. (A) Reproductive worth coefficients resulting in our model, as shown in Fig. S7. (B)

Relatedness coefficients involved in our model, as shown in section 3.2.1.

Moreover, we denote by A` the subset of sex-` individuals in A, e.g., A♀ = O1♀ and A♂ =; if A = O1♀, where

; is the empty set.

Recipients. Recipients are individuals whose fitness is affected by the trait. There are two types of recipients:

individuals that can help (which we call candidate helpers), and individuals that can be helped (which we call

payees). In our model the set of candidate helpers H is thus either the set of first-brood offspring O1 (if both

sexes help, G = B), or (ii) the set of first-brood female offspring O1♀ (if only females help, G = F). A candidate

helper is not necessarily a helper and a payee is not necessarily helped (e.g., if p = 0). We will see that the set

of payees P is the set of second-brood offspring P = O2 in all cases. Consequently, the set of recipients R is

either (i) the set of first-brood offspring O1 (the candidate helpers if both sexes help, G = B), (ii) the set of first-

brood female offspring O1♀ (the candidate helpers if only females help, G = F), or (iii) the set of second-brood

offspring O2 (the payees). In short,

H =


O1 if G = B

O1♀ if G = F
(S3.1.2a)

P =O2 (S3.1.2b)

R =


H for candidate helpers

P for candidate recipients of help (payees).
(S3.1.2c)

Moreover, we denote by R` the subset of sex-` individuals in R.

3.2 Reproductive worth

Sampling experiment. Consider a neutral (zm = z) rare mutant subpopulation introduced at a resident equi-

librium. As ecological time t advances, this mutant subpopulation asymptotically reaches a stable distribution

proportional to u (S2.6.14); since the mutation is neutral, the mutation’s frequency remains constant. Now

consider sampling uniformly at random one young neutral mutant nest at ecological time t → ∞. Having

sampled a nest, we draw an individual actor uniformly at random from the subset A` of sex-` actors in the
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Offspring control, both sexes help (OB)

Offspring control, only females help (OF)

Maternal control, only females help (MF)

Maternal control, both sexes help (MB)

Structure coefficients Substituting relatedness Substituting        and

Substituting 
reproductive 
worth

A B C D

Figure S7: Structure coefficients in terms of reproductive worth. (A) Structure coefficients when helping is

under offspring or maternal control, where either both sexes or only females help. Such structure coefficients

after substituting for (B) relatedness; (C) the probability that an actor is mutant and of a given sex, and the

probability that a recipient is of a given sex; and (D) reproductive worth. The structure coefficients when

helping is under shared control, where either both sexes or only females help, are given by ιSC
x = (∂p/∂x)ιMC

p ,

κSC
x = (∂p/∂x)κMC

p , ιSC
y = (∂p/∂y)ιOC

p , and κSC
y = (∂p/∂y)κOC

p .

nest; we denote this individual by •(A`). Then, we draw a recipient uniformly at random from the subset R`′

of sex-`′ recipients in the nest; we denote this individual by ◦(R`′ ).

Definition of reproductive worth. Based on the sampling experiment defined above, we define the repro-

ductive worth for a random actor in A of a random recipient in R as

ωA,R =


∑
`∈{♀,♂}φ`(A)r•(A`),•(A`)v` if A = R∑
`∈{♀,♂}φ`(A)

∑
`′∈{♀,♂}σ`′ (R)r•(A`),◦(R`′ )v`′ if A 6= R,

(S3.2.1)

where (i) r•(A`),◦(R`′ ) is the relatedness of actor •(A`) to recipient ◦(R`′ ), defined as the conditional probability

that ◦(R`′ ) is mutant given that •(A`) is mutant (see section 3.2.1); (ii)φ`(A) is the probability that an individual

in A is mutant and of sex ` (see section 3.2.2); and (iii) σ`′ (R) is the probability that an individual in R is of sex

`′ (see section 3.2.3). Note that if the actor set is equal to the recipient set (A = R), reproductive worth is

defined so that the random actor and the random recipient are the same individual (i.e., the focal individual

•(A`)) so the relevant relatedness is r•(A`),•(A`). Given these definitions, reproductive worthωA,R is an inclusive

fitness measure of how a random actor values its own reproduction (if A = R) or the reproduction of a random

recipient (if A 6= R).
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Figure S8: Relatedness and relative reproductive worth. (A) Values of the relatedness coefficient r we obtain.

Taken from (S3.2.5), (S3.2.8), and (S3.2.9). (B) Values of relative reproductive worth ρ when both sexes help

(G = B) and brood sex proportions are unbiased (σ1 =σ2 = 1/2). Taken from (S3.3.4) and (S3.3.7).

Outline. In subsections 3.2.1, 3.2.2, and 3.2.3, we give details about the calculation of all the building blocks of

our notion of reproductive worth. Then, in subsection 3.2.4 we show how to use these calculations to rewrite

the structure coefficients ι and κ in terms of reproductive worth, which we then use to obtain an inclusive

fitness interpretation of the selection gradients.

3.2.1 Relatedness

We define the relatedness ri , j of individual i to individual j as the conditional probability that i is mutant given

that j is mutant, that is

ri , j = Pr( j ’s genotype = m|i ’s genotype = m)

= Pr(i ’s genotype = m and j ’s genotype = m)

Pr(i ’s genotype = m)
.

(S3.2.2)

Our measure of relatedness takes the following values, summarized in Fig. S8A.

Self-self (r•(A`),•(A`)). For any set of actors A, the relatedness of an actor to itself is

r•(A`),•(A`) = 1, (S3.2.3)

which is obtained from (S3.2.2) by letting i = j = •(A`).

Mother-offspring (r•(M),◦(Oa`)). The relatedness of a mother to her offspring of sex ` is

r•(M),◦(Oa`) =
u♀q`,♀

u♀
= q`,♀ ∀a ∈ {1,2} . (S3.2.4)
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Indeed, the mother is a mutant with probability u♀ so that both mother and offspring are mutants with

probability u♀q`,♀. Simplifying, the relatedness of mother to offspring equals the transmission probability

q`,♀ ≡ q`,m,mr.

For both diploids and haplodiploids, and from Fig. S4, we then get(
r•(M),◦(O1♀),r•(M),◦(O

1♂)

)
=

(
r•M ,◦(O2♀),r•(M),◦(O

2♂)

)
= (1/2,1/2) . (S3.2.5)

Hence, irrespective of the genetic system and of the sex of the offspring, the relatedness of a mother to a ran-

dom offspring is one half.

Sibling-sibling (r•(O1`),◦(O2`′ )). Consider the relatedness of an individual to a (full) sibling. The conditional

probability that a (second-brood) sibling of sex `′ is mutant given that a (first-brood) offspring of sex ` is

mutant is given by

r•(O1`),◦(O2`′ ) =
∑

k∈{♀,♂} uk q`,k q`′,k∑
k∈{♀,♂} uk q`,k

=
∑

k∈{♀,♂} uk q`,k q`′,k

u`
, (S3.2.6)

where the second equality makes use of equation (S2.6.27). Indeed, a first-brood offspring is a mutant if ei-

ther the mother is a mutant that transmits her mutant allele to the offspring (which happens with probability

u♀q`,♀) or if the father is a mutant that transmits his mutant allele to the offspring (which happens with proba-

bility u♂q
`,♂). Summing up the two probabilities, we obtain the total probability that a first-brood individual

is a mutant, which is equal to u`. This explains the denominator of the expression above. To calculate the nu-

merator, we follow a similar logic, now noting that both offspring are mutants if either the mother is a mutant

that transmits her mutant allele to both offspring (which happens with probability u♀q`,♀q`′,♀) or if the father

is a mutant that transmits his mutant allele to both offspring (which happens with probability u♂q
`,♂q

`′,♂).

Summing up the two probabilities we obtain the total probability that both offspring are mutants. The ratio of

the two probabilities gives the conditional probability that both actor and recipient are mutants given that the

actor is a mutant.

Note that, for a given sex of the actor, ` ∈ {
♀,♂

}
, r•(O1`),◦(O2`′ ) defines a probability distribution over the

possible sexes of the recipient, `′ ∈ {
♀,♂

}
. Indeed

∑
`′∈{♀,♂}

r•(O1`),◦(O2`′ ) =
∑

`′∈{♀,♂}

∑
k∈{♀,♂} uk q`,k q`′,k

u`

= 1

u`

∑
k∈{♀,♂}

uk q`,k

∑
`′∈{♀,♂}

q`′,k

= 1

u`

∑
k∈{♀,♂}

uk q`,k

= 1, (S3.2.7)

where the first line substitutes the formula given in equation (S3.2.6), the second line rearranges, the third line

applies identity (S1.2.1d), and the last equality results from applying (S2.6.27).

For diploids, and from (S2.6.24) and Fig. S4, we obtain(
r•(O1♀),◦(O2♀),r•(O1♀),◦(O

2♂),r•(O
1♂),◦(O2♀),r•(O

1♂),◦(O
2♂)

)
= (1/2,1/2,1/2,1/2) , (S3.2.8)
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so that the relatedness of an individual to any sibling is, irrespective of the sexes of actor and recipient, equal

to one half.

For haplodiploids, and from (S2.6.24) and Fig. S4, we get

(
r•(O1♀),◦(O2♀),r•(O1♀),◦(O

2♂),r•(O
1♂),◦(O2♀),r•(O

1♂),◦(O
2♂)

)
= (3/4,1/4,1/2,1/2) . (S3.2.9)

Here, the asymmetry of the transmission probabilities for the case of haplodiploids makes a female offspring

more related to a sister than to a brother, while a male offspring is equally related to both sisters and brothers.

Connection to other relatedness coefficients. Our relatedness coefficients are conceptually most similar to

the weighted pedigree relatedness coefficients of [23] (p. 190; G ′ in their notation). Such weighted relatedness in-

volves pedigree relatedness weighted by the so-called genetic reproductive values (which we have seen to arise

in our model as the stable sex distribution rather than as reproductive values). Indeed, the stable sex distribu-

tion is part of our relatedness coefficients r (equation (S3.2.4) and (S3.2.6)). Hamilton’s notion of complete or

life-for-life relatedness coefficients includes both the stable sex distribution (described by a factor 2 multiplying

c in his cross-sex formulas in Table 1; [14]), and the sex ratio (his c), which we have seen to arise in our model

as reproductive values. Accordingly, the values for our relatedness coefficients (equations (S3.2.5), (S3.2.8),

and (S3.2.9)) numerically recover the standard values for Hamilton’s life-for-life relatedness coefficients for the

case of singly-mated, outbred queens, and unbiased sex ratio; e.g., p. 81 of [24].

3.2.2 Probability that an actor is mutant and of a given sex

φ`(A) in (S3.2.1) denotes the probability that an actor (i.e., an individual in A) is mutant and of sex `. This

probability takes the following values.

Actors are first-brood offspring (A =O1). If the set of actors is the set of first-brood offspring, the probability

that an actor is mutant and of sex ` is

φ`(O1) =σ1,`u`, (S3.2.10)

since a first-brood offspring is of sex ` with probability σ1,` and it is a mutant with probability u` due to

equation (S2.6.27).

Actors are first-brood female offspring (A =O1♀). If the set of actors is the set of first-brood female offspring,

the probability that an actor is mutant and of sex ` is given by

φ`(O1♀) =


u` if `= ♀

0 if `=♂.
(S3.2.11)

Indeed, a first-brood female offspring is of sex ♀ with probability 1 and it is mutant with probability u` due to

equation (S2.6.27); by definition, a first-brood female offspring is of sex ♂ with probability 0.
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Actors are mothers (A = M). If the set of actors is the mother singleton, the probability that an actor is mutant

and of sex ` is

φ`(M) =


u` if `= ♀

0 if `=♂.
(S3.2.12)

Indeed, a mother is of sex ♀ with probability 1 and it is mutant with probability u` due to equation (S2.6.22);

by definition, a mother is of sex ♂ with probability 0.

3.2.3 Probability that a recipient is of a given sex

σ`′ (R) in (S3.2.1) denotes the probability that a recipient (i.e., an individual in R) is of sex `′. This probability

takes the following value.

Recipients are a-th brood offspring (R =Oa ). Consider the case where the set of recipients is the set of a-th

brood offspring. The probability that an a-th brood offspring is of sex `′ is

σ`′ (Oa) =σa,`′ . (S3.2.13)

3.2.4 Structure coefficients in terms of reproductive worth

We can obtain an inclusive fitness interpretation of the selection gradients by rewriting the structure coeffi-

cients ι and κ in terms of reproductive worth (S3.2.1), for each of our model cases. These equivalences and

their derivation are summarized in Fig. S7. Substituting equations (S3.2.3), (S3.2.4), and (S3.2.6) into Fig. S7A

yields Fig. S7B. Substituting equations (S3.2.10), (S3.2.11), (S3.2.12), and (S3.2.13) into Fig. S7B yields Fig. S7C.

In turn, substituting equation (S3.2.1) into Fig. S7C yields Fig. S7D which expresses the structure coefficients

in terms of reproductive worth.

Overall, we have shown that the structure coefficients can be written in terms of reproductive worth with

the calculated expressions for the probability that an actor of a given sex and a recipient of a given sex carry a

mutation given that the actor carries it (r•(A`),◦(R ′
`

) and r•(A`),•(A`)), the probability that an actor is mutant given

that it is of a given sex (φ`(A)), and the probability that a recipient is of a given sex (σ`′ (R)) (Fig. S7). In doing

this, we find that candidate recipients of help (i.e., the payees) are second-brood offspring for all our model

cases (Fig. S7). For instance, even if helping increases couple survival, payees are still second-brood offspring

and the relevant relatedness is that toward such offspring rather than toward the couple.

3.3 Relative reproductive worth

In order to write more compact expressions, we define the relative reproductive worth, ρA,H ,P , for a random

actor in A relative to a random candidate helper in H of a random payee in P as

ρA,H ,P = ωA,P

ωA,H
, (S3.3.1)

that is, as the ratio between the reproductive worth ωA,P (measuring how much a random actor from A values

the reproduction of a random payee from P ) and the reproductive worthωA,H (measuring how much a random

actor from A values the reproduction of a random candidate helper from H). In the main text, we write ρA
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as short-hand of ρA,H ,P . Our measure of relative reproductive worth can be seen as a generalization of the

concept of life-for-life relatedness coefficients introduced by [14] to allow for actors and recipients to be of

both sexes.

Relative reproductive worth ρA,H ,P takes the following values, summarized for the cases when both sexes

help and brood sex proportions are unbiased in Fig. S8B.

Sibling-sibling-sibling for both females and males (ρO1,O1,O2 ). The relative reproductive worth ρO1,O1,O2 for

a random first-brood offspring actor relative to itself of a random second-brood offspring recipient is given by

ρO1,O1,O2 =
ωO1,O2

ωO1,O1

=
∑
`∈{♀,♂}φ`(O1)

∑
`′∈{♀,♂}σ2,`′r•(O1`),◦(O2`′ )v`′∑

`∈{♀,♂}φ`(O1)v`
. (S3.3.2)

This expression greatly simplifies for two particular but relevant cases. First, for diploids, and via Fig. S7, we

get

ρO1,O1,O2 =
1

2

∑
`∈{♀,♂}σ2,`v`∑
`∈{♀,♂}σ1,`v`

. (S3.3.3)

Second, if both sexes help (G = B) and brood sex proportions are unbiased (i.e., σ1 = σ2 = 1/2), so that v♀ =
v♂ = 1 also holds, (S3.3.2) can be simplified as

ρO1,O1,O2 =
∑
`∈{♀,♂}φ`(O1)

∑
`′∈{♀,♂}σ2,`′r•(O1`),◦(O2`′ )∑

`∈{♀,♂}φ`(O1)

= 1

2

∑
`∈{♀,♂}

u`
∑

`′∈{♀,♂}

r•(O1`),◦(O2`′ )

= 1

2

∑
`∈{♀,♂}

u`

= 1

2
, (S3.3.4)

where the first line follows from substituting (S3.3.2) with v♀ = v♂ = 1; the second line substitutes σ2,♀ =
σ2,♀ = 1/2, and identifies φ`(O1) = u`; the third line applies identity (S3.2.7); and the fourth line simplifies.

Mother-offspring-offspring (ρM ,O1,O2 ). The relative reproductive worth ρM ,O1,O2 for a mother relative to a

random candidate first-brood offspring helper of a random second-brood offspring payee is given by

ρM ,O1,O2 =
ωM ,O2

ωM ,O1

=
∑
`∈{♀,♂}σ2,`r•(M),◦(O2`)v`∑
`∈{♀,♂}σ1,`r•(M),◦(O1`)v`

, (S3.3.5)

which, for both diploids and haplodiploids, simplifies to

ρM ,O1,O2 =
∑
`∈{♀,♂}σ2,`v`∑
`∈{♀,♂}σ1,`v`

. (S3.3.6)

If, additionally, both sexes help (G = B) and brood sex proportions are unbiased (i.e., σ1 = σ2 = 1/2), so that

v♀ = v♂ = 1 also holds, then

ρM ,O1,O2 = 1. (S3.3.7)
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Sibling-sibling-sibling for females (ρO1♀,O1♀,O2 ). The relative reproductive worth ρO1♀,O1♀,O2 for a random

first-brood female offspring actor relative to herself of a random second-brood offspring payee is given by

ρO1♀,O1♀,O2 =
ωO1♀,O2

ωO1♀,O1♀
= ∑
`∈{♀,♂}

σ2,`r•(O1♀),◦(O2`)
v`
v♀

. (S3.3.8)

If only female offspring were produced, then σ2,♀ = 1 and σ2,♂ = 0 so the relative reproductive worth for a

random first-brood female offspring actor relative to herself of a random second-brood sister payee reduces

to

ρO1♀,O1♀,O2 = r•(O1♀),◦(O2♀),

as stated in the main text.

Mother-daughter-offspring (ρM ,O1♀,O2 ). The relative reproductive worth ρM ,O1♀,O2 for a mother relative to a

random candidate first-brood daughter helper of a random second-brood offspring payee is given by

ρM ,O1♀,O2 =
ωM ,O2

ωM ,O1♀
=

∑
`∈{♀,♂}σ2,`r•(M),◦(O2`)v`

r•(M),◦(O1♀)v♀
. (S3.3.9)

If only female offspring were produced, then σ2,♀ = 1 and σ2,♂ = 0 so the relative reproductive worth for a

mother relative to a random candidate first-brood daughter helper of a random second-brood daughter payee

reduces to

ρM ,O1♀,O2 =
r•(M),◦(O2♀)v♀

r•(M),◦(O1♀)v♀
=

r•(M),◦(O2♀)

r•(M),◦(O1♀)
= 1,

as stated in the main text.

3.4 Individual cost and benefit of helping

The cost C (S2.8.4) and the benefit B (S2.8.5) of helping refer to the marginal effects of changing the number of

helpers on either the early or the late productivity of a couple. These quantities can also be written in terms of

inclusive fitness, which considers the effect that an individual candidate helper i ∈ H has, respectively, on its

own personal fitness and on the fitness of its payees (all members of P ). Such individual interpretations of cost

and benefit of helping are the last building block we need in order to interpret the selection gradients from an

inclusive fitness perspective.

For these purposes, let us define the personal fitness of a first or second-brood offspring as their personal

contribution to the stages of unmated reproductives. Now consider a focal individual i belonging to the set of

candidate helpers H . Denoting by pi the probability that i becomes a helper, the personal fitness of i is then

given by

W1,i = (1−pi )s1, (S3.4.1)

while the expected total fitness of individuals belonging to P is

W2 =Π2( f2,h). (S3.4.2)
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The marginal effects of the trait ζ affecting helping of a focal candidate helper on its own personal fitness and

on the total fitness of its second-brood offspring are then respectively given by

−cζ ≡
∂W1,i

∂ζi
= ∂W1,i

∂pi

∂pi

∂ζi
=−s1

∂p

∂ζ
=−C

∂p

∂ζ
, (S3.4.3a)

bζ ≡
∂W2

∂ζi
= ∂W2

∂pi

∂pi

∂ζi
= ∂Π2

∂h
( f2,h)

∂h

∂pi

∂p

∂ζ
= ∂Π2

∂h
( f2,h)

∂pi

∂ζi
= B

∂p

∂ζ
, (S3.4.3b)

where we have used the fact that ∂h/∂pi = 1, since the number of helpers can be written as

h = pi +
∑

j∈H , j 6=i
p j

and the probabilities p` for all ` ∈ H are assumed to be independent.

Thus, the benefit B and cost C equal the inclusive fitness benefit bζ and cost cζ when the trait is the helping

probability ζ= p.

3.5 Inclusive fitness effect for a trait affecting helping and Hamilton’s rule

We have obtained expressions for the selection gradient of a trait ζ affecting helping for all the model cases

we study in terms of structure coefficients (equations (S2.8.40) and (S2.8.41)). We have also shown how such

structure coefficients translate into inclusive fitness measures of reproductive valuation (Fig. S7). Finally, we

have also obtained expressions for the individual benefit and cost (equations (S3.4.3)). Using these results and

the definition of the maximum number of helpers h̄ (equation (S1.1.5)), it follows that the selection gradient

of a trait ζ affecting helping for all the model cases we study can be written as

SC,G
ζ

= h̄

vᵀu
HC,G
ζ

, (S3.5.1)

where we define the inclusive fitness effect of a trait ζ affecting helping as

HC,G
ζ

=−ωA,H cζ+ωA,P bζ. (S3.5.2)

Indeed,HC,G
ζ

is the marginal effect of a candidate helper’s phenotype on the candidate helper’s personal fitness

(−cζ) weighted by how much a random actor values the reproduction of a random candidate helper (ωA,H ) plus

the marginal effect of a candidate helper’s phenotype on the fitness of payees (bζ) weighted by how much a

random actor values the reproduction of a random payee (ωA,P ).

Therefore, for all the model cases we consider, a trait ζ affecting helping is favored by selection if and only

if

−ωA,H cζ+ωA,P bζ︸ ︷︷ ︸
HC,G

ζ

> 0. (S3.5.3)

Condition (S3.5.3) constitutes a Hamilton’s rule for the model cases we consider [19, 20, 21, 22]. Resistance is

thus a selfish trait (both cy < 0 and by < 0) according to the terminology of [25].

Dividing by ωA,H (which is strictly positive), a trait ζ affecting helping is favored by selection if and only if

−cζ+ρA,H ,P bζ > 0,
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where ρA,H ,P is the relative worth for a random actor in A relative to a random candidate helper in H of a

random payee in P . Specifically, if the trait is the helping probability ζ = p, helping is favored by selection if

and only if

−C +ρA,H ,P B > 0. (S3.5.4)

Then, for all the model cases we consider, the critical benefit-cost ratio (S2.8.10) can be alternatively written as(
B

C

)∗
= 1

ρA,H ,P
. (S3.5.5)

3.6 Inclusive fitness effect for reproductive effort

We have obtained the selection gradient of reproductive effort z for all the model cases we study in terms of

the structure coefficient κC,G
z (S2.9.6). We have shown how this structure coefficient translates into an inclusive

fitness measure of reproductive valuation; specifically, it equals ωM ,O2 (Fig. S7). We can define the individual

benefit for a mother of increasing her reproductive effort z as

bz ≡ ∂W2

∂z
= ∂Π2

∂ f2

d f2

dz
= D

d f2

dz
. (S3.6.1)

Using these results, it follows that the selection gradient of reproductive effort z for all the model cases we

study is

SC,G
z = 1

vᵀu
HC,G

z , (S3.6.2)

where we define the inclusive fitness effect of reproductive effort z as

HC,G
z =ωM ,O2 bz . (S3.6.3)
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4 Conflict dissolution and benefit-cost ratio zones

In this section, we define conflict dissolution and show that it can also be understood in terms of benefit-

cost ratios zones. To do this, we proceed in three steps. First, we define zones for the benefit-cost ratio in

which a party (i.e., the mother or the offspring) favors or disfavors increasing helping (Benefit-cost ratio zones

considering the interest of a single party; section 4.1). Second, we define benefit-cost ratio zones considering

simultaneously the interests of both mother and offspring, and define the zone of parent-offspring conflict

over helping (Benefit-cost ratio zones simultaneously considering the interest of mother and offspring; section

4.2). Third, we define conflict dissolution and show how it can be understood in terms of benefit-cost ratio

zones (Conflict dissolution; section 4.3).

4.1 Benefit-cost ratio zones considering the interest of a single party

To define the benefit-cost ratio zones, recall the following. We have obtained that an increasing helping prob-

ability p is favored by selection if and only if
B

C
>

(
B

C

)∗
(S4.1.1)

(equations (S2.8.8) and (S2.8.9a) since κ> 0 for ζ= p). We have also obtained that the critical benefit-cost ratio

(B/C )∗ can be written in inclusive fitness terms as(
B

C

)∗
= 1

ρA,H ,P

for all the model cases we consider (equation (S3.5.4)). Finally, we have seen that the critical benefit-cost ratio

depends on the model case, which when useful we highlight by writing (B/C )∗ = (B/C )∗
C,G

p for the helping

probability p (Fig. S9A).

When helping is under the control of a single party, that is, when helping is under offspring or maternal

control, we have the following benefit-cost ratio zones (Fig. S9B):

1. Low benefit-cost ratio (B/C < (B/C )∗). In this zone, the selection gradient of helping, Sp (z), is negative,

so helping is disfavored by selection. As the helping trait is either under maternal or offspring control,

we say that helping is disfavored by the party controlling helping.

2. High benefit-cost ratio (B/C > (B/C )∗). In this zone, the selection gradient of helping, Sp (z), is positive,

so helping is favored by selection. We say that helping is favored by the party controlling helping.

We can show that if the genetic system is diploid, if only females help, or if brood sex proportions are

unbiased, that is, if at least one of the following conditions is satisfied:

P = D, (S4.1.2a)

G = F, (S4.1.2b)

σ1 =σ2 = 1/2, (S4.1.2c)

then (
B

C

)∗M,G

p
<

(
B

C

)∗O,G

p
(S4.1.3)

52



B

C

W
ho

 c
on

tro
ls

he
lp

 (C
)

Sex of
helpers (G)

O
ffs

pr
in

g 
(O

)
M

ot
he

r (
M

)
Both (B) Female (F)

A

C disfavors
offspring helping

C favors
offspring helping

D

E

Both disfavor
helping

Both favor
helping

Conflict Both disfavor
helping

Both favor
helping

Conflict
(rebel helping)

Both disfavor
helping

Both favor
helping

(voluntary
helping)

Conflict
(manipulated

helping)

Figure S9: Benefit-cost ratio zones. (A) Critical benefit-cost ratio for helping for all model cases and its corre-

sponding inclusive fitness interpretation (equations (S3.5.5), (S3.1.1), and (S3.1.2)). (B) Benefit-cost ratio zones

considering helping control by a single party. Who controls help is given by C (for C ∈ {O,M}, where O stands

for offspring control and M stands for maternal control). (C-E) Benefit-cost ratio zones simultaneously con-

sidering helping control by mother and offspring, (D) when condition (S4.1.3) holds and (E) when the reverse

of condition (S4.1.3) holds. Throughout, we consider only the case when (S4.1.3) holds (D).
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Figure S10: Rebel helping zone. In the case of haplodiploids where both sexes help, the reverse of inequality

(S4.1.3) holds in the red zone. (A) In full brood-sex-proportion space. (B) In “zoomed” brood-sex-proportion

space. Parameter values are: f1 = 30, f2 = 60, s1 = 0.2, s2 = 0.5, sM = 0.9, and p = 0.5.

holds, in which case the helping zone is greater when helping is under maternal control than under offspring

control. Note that at least one out of the three assumptions listed in (S4.1.2) holds in all of our model cases,

except for the case of haplodiploids where both sexes help (HD-C-B) with biased sex proportions (σ1 6=σ2). In

such a case, the reverse of inequality (S4.1.3) can hold in a thin band of extremely female biased sex proportions

(Fig. S10). Yet, such a case might be of limited biological interest as known real populations of haplodiploids

where both sexes help are characterized by unbiased sex proportions [5, 6].

We now show that if any of the assumptions listed in (S4.1.2) holds, then (S4.1.3) holds. First, let us consider

case (S4.1.2b) (i.e., only females help), for which (S4.1.3) takes the form

(
B

C

)∗M,F

p
<

(
B

C

)∗O,F

p
. (S4.1.4)
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Via the expressions in Fig. S9A, and using (S3.3.8) and (S3.3.9), inequality (S4.1.4) simplifies to

r•(M),◦(O1♀)∑
`∈{♀,♂}σ2,`r•(M),◦(O2`)v`

< 1∑
`∈{♀,♂}σ2,`r•(O1♀),◦(O2`)v`

. (S4.1.5)

For both diploids and haplodiploids, we have that r•(M),◦(Oa`) = 1/2 for all ` ∈ {♀,♂} and all a ∈ {1,2} (from

equation (S3.2.5)), so (S4.1.5) simplifies to

1∑
`∈{♀,♂}σ2,`v`

< 1∑
`∈{♀,♂}σ2,`r•(O1♀),◦(O2`)v`

,

which rearranging yields

∑
`∈{♀,♂}

σ2,`

(
1− r•(O1♀),◦(O2`)

)
v` > 0.

This holds true since r•(O1♀),◦(O2`) < 1 always holds (from equations (S3.2.8) and (S3.2.9)). We conclude that

(S4.1.4) is true for both diploids and haplodiploids.

Now, let us consider case (S4.1.2a) (i.e., the genetic system is diploid). Since (S4.1.4) has been established

irrespectively of the genetic system, we only need to consider the case where both sexes help (G = B), that is

(
B

C

)∗M,B

p
<

(
B

C

)∗O,B

p
. (S4.1.6)

for diploids. This inequality follows by substituting from (S3.3.3) and (S3.3.6).

Finally, let us assume that (S4.1.2c) holds (i.e., brood sex proportions are unbiased). Since (S4.1.4) has

been established irrespectively of the brood sex proportions, we only need to consider the case where both

sexes help (G = B). Then, via equations (S3.3.4) and (S3.3.7), we have that(
B

C

)∗M,B

p
= 1, (S4.1.7a)

(
B

C

)∗O,B

p
= 2 (S4.1.7b)

holds, and (S4.1.3) is satisfied.

4.2 Benefit-cost ratio zones simultaneously considering the interest of mother and off-

spring

Considering the interests of both mother and offspring simultaneously, we have two critical benefit-cost ratios:

one corresponding to helping under maternal control ((B/C )∗
M,G

p ) and one corresponding to helping under

offspring control ((B/C )∗
O,G

p ). Defining the minimum critical benefit-cost ratio,

(
B

C

)∗
≡ min

((
B

C

)∗O,G

p
,

(
B

C

)∗M,G

p

)
, (S4.2.1)

and the maximum critical benefit-cost ratio,

(
B

C

)∗
≡ max

((
B

C

)∗O,G

p
,

(
B

C

)∗M,G

p

)
, (S4.2.2)

we have the following three benefit-cost ratios zones (Fig. S9C-E):
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1. Low benefit-cost ratio (B/C < (B/C )∗). In this zone, the selection gradients of helping under maternal

control and under offspring control, SM,G
p (z) and SO,G

p (z), are both negative. Hence, we say that helping

is disfavored from both the mother’s and offspring’s perspective.

2. Intermediate benefit-cost-ratio ((B/C )∗ < B/C < (B/C )∗). In this zone, the selection gradients of helping

under maternal control and under offspring control, SM,G
p (z) and SO,G

p (z), have opposite sign. Thus,

helping is favored (resp. disfavored) from the mother’s perspective and disfavored (resp. favored) from

the offspring’s perspective. Hence, we say that there is parent-offspring conflict over helping. There are

two possibilities:

(a) If (B/C )∗
M,G

p < (B/C )∗
O,G

p holds, so that (B/C )∗ = (B/C )∗
M,G

p and (B/C )∗ = (B/C )∗
O,G

p , the selection

gradient of helping under maternal control, SM,G
p (z), is positive and the selection gradient of help-

ing under offspring control, SO,G
p (z), is negative. Hence, helping is favored from the mother’s per-

spective but is disfavored from the offspring’s perspective. We call “manipulated helping” the help-

ing that is in this zone.

(b) If (B/C )∗
O,G

p < (B/C )∗
M,G

p holds, so that (B/C )∗ = (B/C )∗
O,G

p and (B/C )∗ = (B/C )∗
M,G

p , the selection

gradient of helping under maternal control, SM,G
p (z), is negative and the selection gradient of help-

ing under offspring control, SO,G
p (z), is positive. Hence, helping is disfavored from the mother’s

perspective but is favored from the offspring’s perspective. We call “rebel helping” the helping that

is in this zone. As shown above, this case only occurs for haplodiploids where both sexes help and

with extremely female biased sex proportions (Fig. S10). We do not study this case.

3. High benefit-cost ratio (B/C > (B/C )∗). In this zone, the selection gradients of helping under maternal

and under offspring control, SM,G
p (z) and SO,G

p (z), are both positive. Hence, helping is favored from both

the mother’s and the offspring’s perspective. We call “voluntary helping” the helping that is in this zone.

4.3 Conflict dissolution

We say that conflict dissolution occurs if there are evolutionary times τ0 < τend such that

SM,G
p (z(τ0)) > 0, SO,G

p (z(τ0)) < 0, SM,G
p (z(τend)) > 0, and SO,G

p (z(τend)) > 0, (S4.3.1)

that is, helping is favored by the mother and disfavored by offspring at time τ0, and helping is favored by both

mother and offspring at time τend. Given equation (S3.5.1), conditions (S4.3.1) are equivalent to

HM,G
p (z(τ0)) > 0, HO,G

p (z(τ0)) < 0, HM,G
p (z(τend)) > 0, and HO,G

p (z(τend)) > 0. (S4.3.2)

Provided that HO,G
p (z(τ)) is everywhere differentiable with respect to τ, conditions (S4.3.2) imply that the in-

clusive fitness effect for offspring-controlled helping satisfies the following: there exists an interval [τ1,τ2] ⊂
[τ0,τend) such that

1. HO,G
p (z(τ)) increases with evolutionary time during [τ1,τ2], that is,

dHO,G
p

dτ
(z(τ)) > 0 (persuasion condition)

for all τ ∈ [τ1,τ2], and
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2. HO,G
p (z(τ)) is null at some evolutionary time within [τ1,τ2], that is,

HO,G
p (z(τ)) = 0 (conversion condition)

for some τ ∈ (τ1,τ2).

The persuasion condition and conversion condition state that HO,G
p (z(τ)) changes sign from negative to posi-

tive for some τ ∈ [τ0,τend).

Since HO,G
p (z(τ)) =HO,G

p (p(τ), z(τ)) and from the chain rule, the persuasion condition is equivalent to

dHO,G
p

dτ
= ∂HO,G

p

∂p

dp

dτ
+ ∂HO,G

p

∂z

dz

dτ
> 0 (S4.3.3)

for all τ ∈ [τ1,τ2]. Following [26], we say that the derivative

∂HC,G
ξ

∂ζ

measures the evolutionary synergy of ζ on ξ: if the derivative is positive, there is evolutionary synergy; if it is

negative, there is evolutionary interference. Motivated by (S4.3.3), we say that there is conflict dissolution via

maternal reproductive specialization if there exist τ0 < τend such that (S4.3.1) hold and (S4.3.3) implies that

∂HO,G
p

∂z

dz

dτ
> 0 (S4.3.4)

for all τ ∈ [τ1,τ2]. Thus, by material implication [i.e., (A =⇒ B) ⇐⇒ (¬A∨B)], to establish that there is conflict

dissolution via maternal reproductive specialization, it is sufficient that there is conflict dissolution ((S4.3.1)

hold) and that (S4.3.4) holds for all τ ∈ [τ1,τ2]. From (S4.3.3) and (S4.3.4), if reproductive effort increases over

evolutionary time (i.e., dz/dτ > 0), a necessary condition for conflict dissolution via maternal reproductive

specialization is that there is evolutionary synergy of reproductive effort on helping, that is

∂HO,G
p

∂z
> 0. (S4.3.5)

Conflict dissolution can also be understood in terms of the benefit-cost ratio zones. If (B/C )∗
M,G

p < (B/C )∗
O,G

p

(condition (S4.1.3)) holds, conditions (S4.3.1) imply that conflict dissolution occurs if the system makes a tran-

sition from the conflict zone to the zone where both mother and offspring favor offspring helping, that is, if

there are evolutionary times τ0 < τend such that(
B

C

)∗M,G

p

∣∣∣∣∣
z(τ0)

< B

C

∣∣∣∣
z(τ0)

<
(

B

C

)∗O,G

p

∣∣∣∣∣
z(τ0)

and

(
B

C

)∗M,G

p

∣∣∣∣∣
z(τend)

<
(

B

C

)∗O,G

p

∣∣∣∣∣
z(τend)

< B

C

∣∣∣∣
z(τend)

(S4.3.6)

hold.

There are two basic pathways whereby conflict dissolution could happen in models related to ours. First,

holding constant the benefit-cost ratio B/C , conflict dissolution requires that (B/C )∗
O,G

p decreases (equiva-

lently, that its associated relative reproductive worth increases) over evolutionary time. This might occur, for

instance, if brood sex proportions evolve in a model with a partially bivoltine life cycle (as in [27]). Second,

holding constant the critical benefit-cost ratios (B/C )∗
M,G

p and (B/C )∗
O,G

p (e.g., if sex brood proportions are un-

biased so (S4.1.2c) and hence (S4.1.7) hold), conflict dissolution requires the increase of the benefit-cost ratio

B/C over evolutionary time. In general, conflict dissolution might occur by a combination of the two pathways.

We focus our analysis and results on the second pathway.
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5 Evolutionary synergy and trade-off alleviation

We showed in the previous section that a necessary condition for conflict dissolution via maternal reproductive

specialization is that there is evolutionary synergy of reproductive effort z on helping p (equation (S4.3.5)) as

increasing z evolves. In this section, we show that evolutionary synergy of reproductive effort z on helping

p is equivalent to trade-off alleviation by helpers if reproductive effort is optimal. This yields the conclusion

that, at an optimal reproductive effort, conflict dissolution via maternal reproductive specialization requires

trade-off alleviation by helpers.

To do this, we proceed in four steps. First, we rewrite the selection gradient of reproductive effort in terms

of elasticities, which quantify the assumed trade-offs (Selection gradient of reproductive effort in terms of

elasticities; section 5.1). Second, we show that, if reproductive effort is optimal, evolutionary synergy of repro-

ductive effort z on helping p is equivalent to a positive marginal effect of late fertility on the benefit of helping,

B ; we also show that, if reproductive effort is optimal, evolutionary synergy of helping p on reproductive effort

z is equivalent to a positive marginal effect of helpers on the marginal productivity of late fertility, D (Synergy

of reproductive effort on helping and vice-versa; section 5.2). Third, we show that, if reproductive effort is

optimal, such synergy is symmetric (evolutionary synergy of reproductive effort z on helping p is equivalent

to evolutionary synergy of helping p on reproductive effort z) and equivalent to late productivity being super-

modular (Synergy as supermodularity of late productivity; section 5.3). Finally, we use these results to express

the supermodularity of late productivity at an optimal reproductive effort in terms of trade-off alleviation by

helpers (Synergy as trade-off alleviation; section 5.4).

5.1 Selection gradient of reproductive effort in terms of elasticities

We begin by rewriting the selection gradient of reproductive effort in terms of elasticities, which offer a conve-

nient way to quantify the trade-offs we have assumed. We have shown in section 2.4 that reproductive effort z

is under positive directional selection if the selection gradient of reproductive effort Sz (x) is positive, that is, if

Sz (x) > 0 . We saw in section 2.9 that this condition is satisfied if and only if

D > 0, (S5.1.1)

where

D = ∂Π2

∂ f2
( f2,h) (S5.1.2)

is the marginal productivity of late fertility. Hence, holding the helping probability p constant, selection leads

to a (locally) optimal reproductive effort z∗, and corresponding (locally) optimal late fertility

f ∗
2 = f2(z∗) (S5.1.3)

that locally maximizes late productivityΠ2. Such an optimal z∗ satisfies the first-order condition

D|z∗ = D| f ∗
2
= ∂Π2

∂ f2
( f ∗

2 ,h) = 0. (S5.1.4)
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Now, writing the late productivityΠ2 explicitly in terms of the vital rates (equation (S1.6.15)) and using the

product rule of derivatives, we can rewrite equation (S5.1.2) as

D = ∂

∂ f2

(
sM f2s2

)
= ∂sM

∂ f2
f2s2 + sM s2 + sM f2

∂s2

∂ f2

= sM s2

(
f2

sM

∂sM

∂ f2
+1+ f2

s2

∂s2

∂ f2

)
= sM s2

(
ε f2 (sM )+1+ε f2 (s2)

)
, (S5.1.5)

where we have identified

ε f2 (sM ) = f2

sM

∂sM

∂ f2
= ∂ ln sM

∂ ln f2
, and (S5.1.6a)

ε f2 (s2) = f2

s2

∂s2

∂ f2
= ∂ ln s2

∂ ln f2
, (S5.1.6b)

as, respectively, the (partial) elasticities of sM and s2 with respect to f2. The elasticity εX (Y ) is the percent

change in Y caused by a marginal percent increase in X holding all other variables constant. From our as-

sumptions on the trade-offs between the vital rates (S1.4.6), at least one of the elasticities (S5.1.6) is negative

but neither is positive. Thus, the elasticities (S5.1.6) quantify the trade-offs that we have assumed between

vital rates.

From (S5.1.5) and since sM s2 > 0 (equation (S1.4.5)), a necessary and sufficient condition for D > 0 is that

ε f2 (sM )+ε f2 (s2) >−1. (S5.1.7)

Together with (S5.1.4), this implies that the optimal reproductive effort z∗ is implicitly given by

(
ε f2 (sM )+ε f2 (s2)

)∣∣
z=z∗ =−1. (S5.1.8)

An elasticity equal to −1 means that a percent increase in the input variable leads to an exactly equal per-

cent decrease in the output variable. Hence, condition (S5.1.7) states that a necessary and sufficient condition

for reproductive effort to be favored to increase over evolutionary time is that a percent increase in late fertility

f2 caused by a marginal increase in reproductive effort leads to a weaker percent decrease in the total effect on

maternal survival sM and second-brood survival s2 (see also [28]).

5.2 Synergy of reproductive effort on helping and vice-versa

We now show that, if reproductive effort is optimal, the evolutionary synergy of reproductive effort z on helping

p can be equivalently expressed as either the marginal effect of f2 on B (section 5.2.1) or as the marginal effect

of h on D (section 5.2.2).

5.2.1 Synergy of reproductive effort on helping as late-fertility effects on benefit

At an optimal reproductive effort z∗, there is evolutionary synergy of reproductive effort z on helping p if

∂HO,G
p

∂z

∣∣∣∣∣
z=z∗

> 0. (S5.2.1)
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Noting that the set of actors is the set of candidate helpers (A = H) when helping is under offspring control

(C = O), taking the partial derivative, and by the product rule and the chain rule of derivatives, condition

(S5.2.1) can be written as (
−∂ωH ,H

∂ f2

d f2

dz
C + ∂ωH ,P

∂ f2

d f2

dz
B +ωH ,P

∂B

∂ f2

d f2

dz

)
z=z∗

> 0,

which, since d f2/dz > 0, is equivalent to(
−∂ωH ,H

∂ f2
C + ∂ωH ,P

∂ f2
B +ωH ,P

∂B

∂ f2

)
f2= f ∗

2

> 0. (S5.2.2)

Now, for all C ∈ {M,O} and all G ∈ {B,F}, reproductive worth ωA,R depends on late fertility f2 only through

the reproductive value of females, v♀. More specifically, the partial derivative of ωA,R with respect to f2 is

proportional to the partial derivative of v♀ with respect to f2, which can be readily calculated as

∂v♀
∂ f2

= ∂

∂ f2

(
Π♂,r,rr

Π♀,r,rr

)

=
(
∂
∂ f2
Π♂,r,rr

)
Π♀,r,rr −

(
∂
∂ f2
Π♀,r,rr

)
Π♂,r,rr

Π2
♀,r,rr

=
(
σ2,♂

∂
∂ f2
Π2,rr

)
Π♀,r,rr −

(
σ2,♀ ∂

∂ f2
Π2,rr

)
Π♂,r,rr

Π2
♀,r,rr

=
(
σ2,♂v♂−σ2,♀v♀

)
Π♀,r,rr

∂Π2,rr

∂ f2

=
(
σ2,♂v♂−σ2,♀v♀

)
Π♀,r,rr

∂Π2

∂ f2
( f2,h)

=
(
σ2,♂v♂−σ2,♀v♀

)
Π♀,r,rr

D, (S5.2.3)

where the first line follows from substituting equation (S2.6.12b), the second line applies the quotient rule

of derivatives, the third line uses the derivatives of expression (S1.6.2) with respect to f2, the fourth line uses

the expressions for reproductive values (S2.6.12), the fifth line uses (S1.6.16), and the last line identifies the

marginal productivity of late fertility D (S2.9.3) and rearranges. Evaluating (S5.2.3) we then obtain, via (S5.1.4),

(
∂v♀
∂ f2

)
f2= f ∗

2

=
(
σ2,♂v♂−σ2,♀v♀

)
Π♀,r,rr

∣∣∣∣∣∣
f2= f ∗

2

× D| f2= f ∗
2
= 0, (S5.2.4)

so that the partial derivative of the reproductive value of females with respect to late fertility vanishes at an

optimal late fertility. It follows that (
∂ωH ,H

∂ f2

)
f2= f ∗

2

=
(
∂ωH ,P

∂ f2

)
f2= f ∗

2

= 0,

and, since ωH ,P > 0, condition (S5.2.2) simplifies to(
∂B

∂ f2

)
f2= f ∗

2

> 0.

Summarizing, we have

∂HO,G
p

∂z

∣∣∣∣∣
z=z∗

> 0 ⇐⇒
(
∂B

∂ f2

)
f2= f ∗

2

> 0, (S5.2.5)
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which states that, at an optimal reproductive effort, there is evolutionary synergy of reproductive effort z on

helping p if and only if the marginal benefit of helping is increasing in late fertility, f2.

5.2.2 Synergy of helping on reproductive effort as helper effects on marginal productivity

Likewise, at an optimal reproductive effort z∗, there is evolutionary synergy of helping p on reproductive effort

z if

∂HC,G
z

∂p

∣∣∣∣∣
z=z∗

> 0. (S5.2.6)

Taking the derivative of the inclusive fitness effect HC,G
z with respect to p, this condition can be written as(

∂ωM ,O2

∂p
D +ωM ,O2

∂D

∂h

∂h

∂p

)
z=z∗

> 0, (S5.2.7)

where ωM ,O2 is the reproductive worth for a mother of a second-brood offspring. Since D vanishes at z = z∗,

and since ωM ,O2 > 0 and ∂h/∂p = h̄ > 0, this condition simplifies to(
∂D

∂h

)
f2= f ∗

2

> 0.

Summarizing, we have that

∂HC,G
z

∂p

∣∣∣∣∣
z=z∗

> 0 ⇐⇒
(
∂D

∂h

)
f2= f ∗

2

> 0, (S5.2.8)

which states that, at an optimal reproductive effort, there is evolutionary synergy of helping p on reproductive

effort z if and only if the marginal productivity of late fertility is increasing in the expected number of helpers,

h.

5.3 Synergy as supermodularity of late productivity

We now show that, at an optimal reproductive effort, the conditions for evolutionary synergy of helping on re-

productive effort (S5.2.1) and for evolutionary synergy of reproductive effort on helping (S5.2.6) are equivalent,

and that both are equivalent to the condition that late productivity is supermodular.

This observation is immediate from the fact that the right-hand inequalities in (S5.2.5) and (S5.2.8) are

equivalent. Indeed, it follows both from our definitions of marginal benefit of helping B (S2.8.5) and marginal

productivity of late fertility D (S2.9.3), and from the symmetry of second derivatives, that

∂B

∂ f2
= ∂2Π2

∂ f2∂h
= ∂2Π2

∂h∂ f2
= ∂D

∂h
, (S5.3.1)

and hence that

∂2Π2

∂ f2∂h
> 0 ⇐⇒ ∂B

∂ f2
> 0 ⇐⇒ ∂D

∂h
> 0. (S5.3.2)

Since this identity also holds at an optimal level of late fertility f ∗
2 , we have

∂2Π2

∂ f2∂h
( f ∗

2 ,h) > 0 ⇐⇒
(
∂B

∂ f2

)
f2= f ∗

2

> 0 ⇐⇒
(
∂D

∂h

)
f2= f ∗

2

> 0. (S5.3.3)
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Expression (S5.3.1) reminds us of the connection between the partial derivatives of the marginal productivity

of one input (e.g., expected number of helpers, h) with respect to the other (e.g., the late fertility f2). Expression

(S5.3.2) reminds us of the fact that the condition for the marginal productivity of one variable to be increasing

in the other is equal to the condition that the cross partial derivatives of the late productivity functionΠ2( f2,h)

are positive, that is, that the late productivity Π2 is supermodular. Supermodularity formalizes a classic way

of interpreting the notion of complementarity in economics; namely that having more of one input increases

the marginal returns to having more of another input [29]. In our case, supermodularity of Π2 means that

having more helpers increases the marginal productivity of late fertility, and that having more late fertility

(via increased reproductive effort) increases the marginal productivity of helping, that is, that helping and

reproductive effort act as strategic complements.

In conclusion, we have, via expressions (S5.3.3), (S5.2.5) and (S5.2.8), that

∂2Π2

∂ f2∂h
( f ∗

2 ,h) > 0 ⇐⇒ ∂HO,G
p

∂z

∣∣∣∣∣
z=z∗

> 0 ⇐⇒ ∂HC,G
z

∂p

∣∣∣∣∣
z=z∗

> 0. (S5.3.4)

Expression (S5.3.4) states that the supermodularity of the late productivity Π2 (i.e., the complementarity be-

tween helping and reproductive effort) at an optimal reproductive effort is a necessary and sufficient condi-

tion for evolutionary synergy between helping and reproductive effort. Such evolutionary synergy means that

helping and reproductive effort are in positive feedback whereby the evolution of reproductive effort increases

selection for helping, and the evolution of helping increases selection for reproductive effort.

5.4 Synergy as trade-off alleviation

Trade-off alleviation. The condition on the supermodularity of the late productivity function Π2 appearing

on the left hand side of (S5.3.4) can be given a demographically meaningful interpretation in terms of the way

helping by offspring alleviates life-history trade-offs faced by mothers. To do so, note that we can write the

cross partial derivative as

∂2Π2

∂ f2∂h
( f ∗

2 ,h) =
(
∂D

∂h

)
f2= f ∗

2

=
{
∂

∂h

[
sM s2

(
ε f2 (sM )+1+ε f2 (s2)

)]}
f2= f ∗

2

=
[
∂ (sM s2)

∂h

(
ε f2 (sM )+1+ε f2 (s2)

)+ sM s2
∂
(
ε f2 (sM )+1+ε f2 (s2)

)
∂h

]
f2= f ∗

2

, (S5.4.1)

where we made use of (S5.3.1) in the first line, of (S5.1.5) in the second line, and of the product rule of deriva-

tives in the third line.

Since at an optimal reproductive effort, ε f2 (sM )+1+ ε f2 (s2) = 0 holds (see (S5.1.8)), equation (S5.4.1) sim-

plifies to

∂2Π2

∂ f2∂h
( f ∗

2 ,h) =
[

sM s2
∂
(
ε f2 (sM )+1+ε f2 (s2)

)
∂h

]
f2= f ∗

2

. (S5.4.2)

Given that sM s2 > 0 (see (S1.4.5)), it follows that

∂2Π2

∂ f2∂h
( f ∗

2 ,h) > 0 ⇐⇒
(
∂ε f2 (sM )

∂h
+ ∂ε f2 (s2)

∂h

)∣∣∣∣
f2= f ∗

2

> 0. (S5.4.3)
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As previously stated, ε f2 (sM ) and ε f2 (s2) measure the percent life-history trade-offs faced by a mother by in-

creasing her late fertility f2. Hence, condition (S5.4.3) states that, at an optimal reproductive effort, the condi-

tion forΠ2 to be supermodular is equivalent to the condition that helpers alleviate the proportional life-history

trade-offs. Therefore, together with (S4.3.3) and (S5.3.4), condition (S5.4.3) yields the conclusion that conflict

dissolution via maternal reproductive specialization requires that helpers alleviate trade-offs as optimal repro-

ductive effort evolves.

Comparative statics of optimal reproductive effort with respect to the expected number of helpers. A con-

sequence of the supermodularity of the late productivity function is that a given (locally) optimal reproductive

effort z∗ is increasing in the expected number of helpers (see, e.g., [29]). That is,

∂2Π2

∂ f2∂h
( f ∗

2 ,h) > 0 ⇐⇒ ∂z∗

∂h
> 0. (S5.4.4)

For our purposes, this can be proven using the implicit function theorem as follows. A locally optimal late

fertility value f ∗
2 is implicitly given by (see equation (S5.1.4))

∂Π2

∂ f2
( f ∗

2 ,h) = 0. (S5.4.5)

Differentiating with respect to h, we have

∂2Π2

∂ f 2
2

( f ∗
2 ,h)

∂ f ∗
2

∂h
+ ∂2Π2

∂h∂ f2
( f ∗

2 ,h) = 0, (S5.4.6)

so that solving for ∂ f ∗
2 /∂h we get

∂ f ∗
2

∂h
=−

∂2Π2

∂h∂ f2
( f ∗

2 ,h)

∂2Π2

∂ f 2
2

( f ∗
2 ,h)

> 0, (S5.4.7)

from which (S5.4.4) follows by the chain rule, because
∂2Π2

∂ f 2
2

( f ∗
2 ,h) < 0 holds (as z∗ is a local maximum) and

f2(z) is an increasing function.

Examples of late productivity functions that do not allow for evolutionary synergy. There are at least two

important classes of possible late productivity functions that do not allow for evolutionary synergy: additively

separable functions, and multiplicatively separable functions.

First, consider late productivity functions that are additively separable, that is, late productivity functions

that could be written as

Π2( f2,h) =Π2,1( f2)+Π2,2(h) (S5.4.8)

with Π2,1 : R∗+ → R∗+ and Π2,2 : [0, f1] → R∗+. A function of the form of (S5.4.8) is not supermodular in any point

of its domain, as the cross partial derivative is zero at all points. It then follows that the condition in the left

hand side of (S5.3.4) is never satisfied.

Second, consider late productivity functions that are multiplicatively separable, that is, one could find

functionsΠ2,1 :R∗+ →R∗+ andΠ2,2 : [0, f1] →R∗+ so that

Π2( f2,h) =Π2,1( f2)×Π2,2(h) (S5.4.9)
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holds. To show that for functions of the form (S5.4.9) there is no evolutionary synergy between helping and

fertility at an optimal late fertility level, note first that in the case of a multiplicatively separable Π2 function,

the first order condition for an optimal reproductive effort (S5.1.4) implies

dΠ2,1

d f2
( f ∗

2 ) = 0. (S5.4.10)

Note second that evaluating the cross partial derivative ofΠ2 at an optimal fertility level, we obtain

∂2Π2

∂ f2∂h

∣∣∣∣
f2= f ∗

2

= ∂

∂h

(
∂Π2

∂ f2

)∣∣∣∣
f2= f ∗

2

= ∂

∂h

(
Π2,2(h)

dΠ2,1

d f2

)∣∣∣∣
f2= f ∗

2

=
(

dΠ2,2

dh

dΠ2,1

d f2
+Π2,2(h)

∂

∂h

(
dΠ2,1

d f2

))∣∣∣∣
f2= f ∗

2

= dΠ2,2

dh
(h)

dΠ2,1

d f2
( f ∗

2 )

= 0

where the third line applies the product rule of derivatives, the fourth line follows because dΠ2,1/d f2 is inde-

pendent of h (and hence ∂(dΠ22/d f2)/∂h = 0), and the last line follows from (S5.4.10).

5.5 Summary of equivalences

To summarize, the following statements are equivalent.

1. Increasing reproductive effort increases selection for helping at optimal reproductive effort:

∂HO,G
p

∂z

∣∣∣∣∣
z=z∗

> 0.

2. Increasing late fertility increases the benefit of helping at optimal late fertility:(
∂B

∂ f2

)
f2= f ∗

2

> 0.

3. Increasing helping increases selection for reproductive effort at optimal reproductive effort:

∂HC,G
z

∂p

∣∣∣∣∣
z=z∗

> 0.

4. Increasing helpers increases the marginal productivity of late fertility at optimal late fertility:(
∂D

∂h

)
f2= f ∗

2

> 0.

5. Late fertility is supermodular at optimal late fertility:

∂2Π2

∂ f2∂h
( f ∗

2 ,h) > 0.

6. Helpers alleviate the total percent trade-off at optimal late fertility:(
∂ε f2 (sM )

∂h
+ ∂ε f2 (s2)

∂h

)∣∣∣∣
f2= f ∗

2

> 0.
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7. Helpers increase the optimal reproductive effort:

∂z∗

∂h
> 0.

8. Helpers increase the optimal late fertility:
∂ f ∗

2

∂h
> 0.
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6 Evolutionary dynamics

In this section, we write equations describing the evolutionary dynamics of the evolving traits. To do this, we

proceed in two steps. First, in section 6.1 (Canonical equation) we write the evolutionary dynamic equations

by postulating that our evolving traits satisfy a form of the canonical equation of adaptive dynamics [2, 30, 31].

Second, in section 6.2 (Resulting evolutionary dynamic equations when traits are genetically uncorrelated) we

write the evolutionary dynamic equations that result when traits are genetically uncorrelated.

6.1 Canonical equation

We follow the evolutionary dynamics of the phenotypic vector z. Given our assumptions of δ-weak selec-

tion and rare mutation, we expect that, in our model, invasion implies fixation [4] and that the deterministic

evolutionary dynamics are to first order approximately given by a form of the canonical equation of adaptive

dynamics [2, 30, 31]. Thus, we conjecture that the evolutionary dynamics of z over evolutionary time τ are to

first order given by
dz

dτ
= G(z)S(z), (S6.1.1)

with a covariance matrix G(z) given by

G(z) =
Gpp Gpz

Gzp Gzz


for model cases of offspring or maternal control, and by

G(z) =


Gxx Gx y Gxz

Gy x Gy y Gy z

Gzx Gz y Gzz


for model cases of shared control. The ζξ-th entry Gζξ(z) of G is proportional to the covariance of mutational

effects Cov[Zm−ζ,Ξm−ξ] = Cov[Zm,Ξm], where Zm andΞm are random variables with small variation around

their respective expected values E[Zm] = ζ and E[Ξm] = ξ. The diagonal entries Gζζ(z) are non-negative, and

we also denote them as Gζ(z). G is symmetric. If traits are genetically uncorrelated, then G is diagonal.

6.2 Resulting evolutionary dynamic equations when traits are genetically uncorrelated

When traits are genetically uncorrelated, the resulting evolutionary dynamic equations are

dζ

dτ
=Gζ

h̄

vᵀu
ωA,H

(−cζ+ρA,H ,P bζ
)

(S6.2.1a)

dz

dτ
=Gz

1

vᵀu
ωM ,O2 bz , (S6.2.1b)

for ζ affecting helping (i.e., ζ ∈ {p} for model cases of offspring or maternal control and ζ ∈ {x, y} for model

cases of shared control; using equations (S6.1.1), (S3.5.1), (S3.5.2), (S3.3.1), (S3.6.2), and (S3.6.3)). We now list

the resulting dynamic equations for each model case.
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Offspring control, both sexes help. When helping is under offspring control and both sexes help, and from

equations (S6.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations are

dp

dτ
=Gp

f1

vᵀu
ωO1,O1

(−C +ρO1,O1,O2 B O,B)
, (S6.2.2a)

dz

dτ
=Gz

1

vᵀu
ωM ,O2

d f2

dz
DO,B. (S6.2.2b)

For the particular case of unbiased sex proportions in both broods (i.e., σ1,♀ = σ1,♂ = σ2,♀ = σ2,♂ = 1/2)

using Fig. S7 and (S3.3.4), equations (S6.2.2) further simplify for both diploids and haplodiploids to

dp

dτ
=Gp

f1

vᵀu

1

2

 ∑
`∈{♀,♂}

u`v`

(
−C + 1

2
B O,B

)
, (S6.2.3a)

dz

dτ
=Gz

1

vᵀu
u♀

1

2

 ∑
`∈{♀,♂}

r•(M),◦(O2`)v`

 d f2

dz
DO,B. (S6.2.3b)

For diploids, each of the sums over ` in parentheses in equations (S6.2.3) equals 1.

Offspring control, only females help. When helping is under offspring control and only females help, and

from equations (S6.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations

are

dp

dτ
=Gp

f1σ1,♀
vᵀu

ωO1♀,O1♀
(
−C +ρO1♀,O1♀,O2 B O,F

)
, (S6.2.4a)

dz

dτ
=Gz

1

vᵀu
ωM ,O2

d f2

dz
DO,F. (S6.2.4b)

Maternal control, both sexes help. When helping is under maternal control and both sexes help, and from

equations (S6.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations are

dp

dτ
=Gp

f1

vᵀu
ωM ,O1

(−C +ρM ,O1,O2 B M,B)
, (S6.2.5a)

dz

dτ
=Gz

1

vᵀu
ωM ,O2

d f2

dz
DM,B. (S6.2.5b)

For the particular case of unbiased sex proportions in both broods (i.e., σ1,♀ = σ1,♂ = σ2,♀ = σ2,♂ = 1/2)

using Fig. S7 and (S3.3.7), equations (S6.2.5) further simplify for both diploids and haplodiploids to

dp

dτ
=Gp

f1

vᵀu
u♀

1

2

 ∑
`∈{♀,♂}

r•(M),◦(O1`)v`

(−C +B M,B)
(S6.2.6a)

dz

dτ
=Gz

1

vᵀu
u♀

1

2

 ∑
`∈{♀,♂}

r•(M),◦(O2`)v`

 d f2

dz
DM,B. (S6.2.6b)

For diploids, each of the sums over ` in parentheses in equations (S6.2.6) equals 1.

Maternal control, only females help. When helping is under maternal control and only females help, and

from equations (S6.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations

are

dp

dτ
=Gp

f1σ1,♀
vᵀu

ωM ,O1♀
(
−C +ρM ,O1♀,O2 B M,F

)
(S6.2.7a)

dz

dτ
=Gz

1

vᵀu
ωM ,O2

d f2

dz
DM,F. (S6.2.7b)
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Shared control, both sexes help. When helping is under shared control and both sexes help, and from equa-

tions (S6.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations are

dx

dτ
=Gx

f1

vᵀu
ωM ,O1

∂p

∂x
(x, y)

(−C +ρM ,O1,O2 B S,B)
(S6.2.8a)

dy

dτ
=Gy

f1

vᵀu
ωO1,O1

∂p

∂y
(x, y)

(−C +ρO1,O1,O2 B S,B)
(S6.2.8b)

dz

dτ
=Gz

1

vᵀu
ωM ,O2

d f2

dz
DS,B. (S6.2.8c)

For the particular case of unbiased sex proportions in both broods (i.e., σ1,♀ = σ1,♂ = σ2,♀ = σ2,♂ = 1/2)

using Fig. S7, (S3.3.7), and (S3.3.4), equations (S6.2.8) further simplify for both diploids and haplodiploids to

dx

dτ
=Gx

f1

vᵀu
u♀

1

2

 ∑
`∈{♀,♂}

r•(M),◦(O1`)v`

 ∂p

∂x
(x, y)

(−C +B S,B)
(S6.2.9a)

dy

dτ
=Gy

f1

vᵀu

1

2

 ∑
`∈{♀,♂}

u`v`

 ∂p

∂y
(x, y)

(
−C + 1

2
B S,B

)
(S6.2.9b)

dz

dτ
=Gz

1

vᵀu
u♀

1

2

 ∑
`∈{♀,♂}

r•(M),◦(O2`)v`

 d f2

dz
DS,B. (S6.2.9c)

For diploids, each of the sums over ` in parentheses in equations (S6.2.9) equals 1.

Shared control, only females help. When helping is under shared control and only females help, and from

equations (S6.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations are

dx

dτ
=Gx

f1σ1,♀
vᵀu

ωM ,O1♀
∂p

∂x
(x, y)

(
−C +ρM ,O1♀,O2 B S,F

)
(S6.2.10a)

dy

dτ
=Gy

f1σ1,♀
vᵀu

ωO1♀,O1♀
∂p

∂y
(x, y)

(
−C +ρO1♀,O1♀,O2 B S,F

)
(S6.2.10b)

dz

dτ
=Gz

1

vᵀu
ωM ,O2

d f2

dz
DS,F. (S6.2.10c)
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7 Specific functional forms

In this section, we specify the functional forms for the vital rates composing late productivity Π2(h, z) (Vital

rates composing late productivity; section 7.1) and for the joint phenotype p(x, y) for helping under shared

control (Joint helping phenotype; section 7.2) that we use to illustrate our results in the main text.

7.1 Vital rates composing late productivity

We consider the following effects of helping and of reproductive effort. We let helpers increase only the couple

survival sM ( f2,h). In turn, reproductive effort increases the late fertility f2(z) and decreases only the couple

survival sM ( f2,h). We let second-brood survival s2( f2,h) be constant. Specifically, we use the following func-

tional forms for the vital rates composing late productivity:

f2(z) = f0zα, (S7.1.1a)

sM ( f2,h) = sM (h)

(
1− f2

f2(h)

)
, (S7.1.1b)

s2( f2,h) = s2, (S7.1.1c)

where s2 denotes a real-valued constant in the interval (0,1], sM (h) and f2(h) are positive increasing functions

of h, with sM (h̄) ≤ 1, and where the domain S = SM × [0, h̄] of sM (see (S1.4.5a)) is given by

S =
{

( f2,h) ∈R∗
+× [0, h̄] : f2 < f2(h)

}
,

so that the image of sM is the interval (0,1). Thus, for a given h, sM ( f2,h) is a linear function of f2 with negative

slope equal to −sM (h)/ f2(h) and intercept equal to sM (h). It follows that, for a given h, sM (h) is the maximum

couple survival that can be achieved (as late fertility f2 → 0) and f2(h) is the maximum late fertility that can be

achieved with a positive couple survival (as sM → 0). Eq. (S7.1.1b) thus specifies the simplest kind of trade-off

between sM ( f2,h) and f2: a linear trade-off.

Late productivity is given by the product of the three vital rates, hence

Π2( f2,h) = sM ( f2,h) f2s2. (S7.1.2)

The benefit of helping is then

B = ∂Π2

∂h
=

[
dsM (h)

dh

(
1− f2

f2(h)

)
+ sM (h)

f2

f2
2

(h)

d f2(h)

dh

]
f2s2, (S7.1.3)

which is positive since sM (h) and f2(h) are increasing in h.

The marginal productivity of late fertility is given by

D = ∂Π2

∂ f2
= s2sM (h)

(
1− 2 f2

f2(h)

)
. (S7.1.4)

D has a single sign change from positive to negative as f2 increases. This happens at the optimal late fertility

rate

f ∗
2 (h) = f2(h)

2
, (S7.1.5)
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obtained at an optimal level of reproductive effort equal to

z∗(h) =
(

f2(h)

2 f0

)1/α

. (S7.1.6)

Hence, for each value of h, the optimal late fertility is half the maximum late fertility. As f2(h) is increasing in

h, so is f ∗
2 (h). This is to be expected as there is synergy of optimal reproductive effort on helping, since

∂Π2

∂h∂ f2

∣∣∣∣
f2= f ∗

2

= s2sM (h)
1

f2(h)

d f2(h)

dh
> 0

holds. Further note that s∗M (h) = sM ( f ∗
2 ,h) = sM (h)/2.

We have assumed that f2(h) is strictly increasing. Suppose for a moment that f2(h) = f̄2, where f̄2 is a

constant. This is an example where the resulting late productivity functionΠ2 is multiplicatively separable (cf.

equation (S5.4.9)). Hence, f ∗
2 = f̄2 is independent of h and there is not synergy of optimal reproductive effort

on helping, as

∂Π2

∂h∂ f2

∣∣∣∣
f2= f ∗

2

= 0.

To complete the specification of the vital rates composing late productivity, we use the functions

sM (h) = sM +
(
sM − sM

) h

h̄
, (S7.1.7a)

f2(h) = f2 +
(

f2 − f2

) h

h̄
, (S7.1.7b)

where the constant sM ∈ (0,1] gives the smallest possible intercept for couple survival attained at h = 0, the

constant sM ∈ [sM ,1] gives the largest possible intercept for couple survival attained at h = h̄, the constant

f2 ∈R∗+ gives the smallest possible value of f2(h) attained at h = 0, and the constant f2 ∈ [ f2,∞) gives the largest

possible value of f2(h) attained at h = h̄ (the resulting sM ( f2,h) with the parameter values used is plotted in

Fig. 3).

7.2 Joint helping phenotype

Here we specify the function for the joint helping phenotype p(x, y) for model cases of shared control. We

suppose that maternal influence x and offspring resistance y engage in a contest to achieve the expression of

the helping phenotype p. We consider two different kinds of contests. First, we consider simultaneous con-

tests, where maternal influence x and offspring resistance y contest simultaneously to determine the helping

probability. For this kind of contest, we assume that the helping probability is given by the probability that the

mother wins an imperfectly discriminating contest within the class of contest success functions proposed and

axiomatized by [32]. Specifically, we assume

p(x, y) = gM(x;χ)

1+ gM(x;χ)+ gO(y ;ψ)
, (S7.2.1)

where gM(x;χ) and gO(y ;ψ) are “impact functions” to be specified below, with parameters χ > 0 and ψ > 0

measuring the “power” of mother and offspring, respectively.
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Second, we also consider sequential contests, where the mother acts first (engaging in a contest “against

nature”; e.g., secreting molecules that alter offspring development) and the offspring acts second (e.g., by sub-

sequently readjusting its own development). For these contests we assume the following general form:

p(x, y) = gM(x;χ)

1+ gM(x;χ)

(
1− gO(y ;ψ)

1+ gO(y ;ψ)

)
= gM(x;χ)

1+ gM(x;χ)+ gO(y ;ψ)+ gM(x;χ)gO(y ;ψ)
(S7.2.2)

for impact functions gM(x;χ) and gO(y ;ψ).

We assume that the impact functions gM(x;χ) and gO(y ;ψ) satisfy the following properties:

1. gM(x;χ) and gO(y ;ψ) are non-negative strictly increasing functions gi : R+ →R+, i ∈ {M,O}. This can be

interpreted as the impact functions measuring the absolute effort devoted to the contest.

2. gM(x;χ) and gO(y ;ψ) are strictly increasing in their parameters, that is ∂gM(x;χ)/∂χ> 0 and ∂gM(x;ψ)/∂ψ>
0. This can be interpreted as power increasing the ability of the effort to succeed in the contest.

3. gM(0;χ) = 0. This can be interpreted as stating that without maternal influence, the mother devotes no

effort to contest offspring helping.

It follows that p(x, y) satisfies:

1. p(x, y) ∈ [0,1] for all x ≥ 0, y ≥ 0 (i.e., the helping probability is well defined).

2. p(x, y) is strictly increasing in x and strictly decreasing in y (i.e., maternal influence and offspring resis-

tance affect the helping probability as required by (S1.2.3)).

3. p(0, y) = 0 (i.e., there is no helping in the absence of maternal influence).

4. For given x ≥ 0 and y ≥ 0, p(x, y) is strictly increasing in χ and strictly decreasing in ψ (i.e., the “power”

of maternal influence can be increased by increasing χ and the “power” of offspring resistance can be

increased by increasing ψ).

It remains to specify the impact function. We consider an exponential function of the kind

gM(x;χ) = eχx −1, (S7.2.3a)

gO(y ;ψ) = eψy −1, (S7.2.3b)

which satisfies the required properties and has been used in contest models [33] (we add the −1 in the expo-

nential impact function to satisfy gM(0;χ) = 0). The resulting joint phenotype is illustrated in Fig. S11.

7.3 Comparison between simultaneous and sequential contests

From equations (S2.8.41), we have that the relative evolutionary speed but not the direction of selection of

maternal influence and offspring resistance depend respectively on ∂p/∂x and ∂p/∂y . Thus, conflict disso-

lution is promoted by greater ∂p/∂x and smaller |∂p/∂y |. We now determine whether conflict dissolution is

promoted by simultaneous (S7.2.1) or sequential (S7.2.1) contests.
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Figure S11: Joint helping phenotype. The helping probability p(x, y) under (A) sequential or (B) simultaneous

contests. Parameter values are as in Fig. 2; in particular, mother and offspring have the same power in both

panels (χ=ψ= 1).

Denoting by psim(x, y) the helping probability defined by (S7.2.1), we obtain

∂psim

∂x
= 1+ gO

(1+ gM + gO)2

∂gM

∂x
.

Similarly, denoting by pseq(x, y) the helping probability defined by (S7.2.2), we obtain

∂pseq

∂x
= 1

(1+ gM)2(1+ gO)

∂gM

∂x
.

Thus,

∂psim

∂x
− ∂pseq

∂x
= 1+ gO

(1+ gM + gO)2

∂gM

∂x
− 1

(1+ gM)2(1+ gO)

∂gM

∂x

=
[

(1+ gO)2

(1+ gM + gO)2 − 1

(1+ gM)2

]
1

1+ gO

∂gM

∂x
,

which is positive if
(1+ gO)2

(1+ gM + gO)2 − 1

(1+ gM)2 > 0.

This condition holds whenever gO > 0. Therefore, the evolutionary speed of maternal influence is promoted

by simultaneous relative to sequential contests, provided that gO > 0, which holds for an exponential impact

function (S7.2.3b) if there is some resistance.

Proceeding analogously for resistance, we have that

∂psim

∂y
=− gM

(1+ gM + gO)2

∂gO

∂y

∂pseq

∂y
=− gM

(1+ gM)(1+ gO)2

∂gO

∂y
.

Thus, ∣∣∣∣∂pseq

∂y

∣∣∣∣− ∣∣∣∣∂psim

∂y

∣∣∣∣= gM

(1+ gM)(1+ gO)2

∂gO

∂y
− gM

(1+ gM + gO)2

∂gO

∂y

=
[

1

(1+ gM)(1+ gO)2 − 1

(1+ gM + gO)2

]
gM

∂gO

∂y
,
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which, provided that gM > 0, is positive if

1

(1+ gM)(1+ gO)2 − 1

(1+ gM + gO)2 > 0.

This condition reduces to

1+ gM − g 2
O > 0,

which is positive for sufficiently small gO. Therefore, the evolutionary speed of offspring resistance is hin-

dered by simultaneous relative to sequential contests, provided that there is some maternal influence and that

resistance is small.

We conclude that conflict dissolution is promoted by simultaneous relative to sequential contests, pro-

vided that there is some maternal influence, some offspring resistance, and that resistance is small.
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Figure S12: Conflict dissolution via maternal reproductive specialization (evolutionary model) in hap-

lodiploids. Analogous plots to Fig. 2. Same parameter values except that here the genetic system is hap-

lodiploid, only females help, f2 = 16, and f2 = 40.

8 Specification of Fig. 2, and additional figures

The specification of Fig. 2 is the following. The genetic system is diploid, both sexes help, and the determina-

tion of the joint helping phenotype is sequential. Functions:

f2(z) = f0zα, (S8.0.1a)

sM ( f2,h) =
(

sM +
(
sM − sM

) h

h̄

)1− f2

f2 +
(

f2 − f2

)
h
h̄

 , (S8.0.1b)

p(x, y) = e−χx−ψy (
eχx −1

)
, (S8.0.1c)

Gζ =Gζ

(
1−e−βζ

)
for ζ ∈ {

x, y
}

. (S8.0.1d)

Parameter values: f0 = 1,α= 1, sM = 0.2, sM = 1, f1 = 8, f2 = 36, f2 = 72, s1 = s2 = 0.1,χ=ψ= 1,σ1♀ =σ2♀ = 0.5,

Gx = Gy = 1, and β = 100. Traits are genetically uncorrelated: Gx y = Gxz = Gy z = 0. Initial conditions for

z(τ) = (x(τ), y(τ), z(τ))ᵀ are x(0) = y(0) = 10−5 and z(0) = z∗(0). For Fig. 2A-E, z is constant. For Fig. 2F-J, z is

equal to z∗(h).

Conflict dissolution in haplodiploids is shown in Fig. S12. Promoters of conflict dissolution in haplodiploids

are described in Fig. S13. Conflict dissolution with low genetic variance of reproductive effort is shown in

Fig. S14. In all cases, Gz follows the functional form given in eq. (S8.0.1d) with β= 100.
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Figure S13: Promoters of conflict dissolution in haplodiploids. Analogous plots to Fig. S12 except that here the

genetic system is haplodiploid, only females help, and parameter values are as in Fig. S12 with the following

genetic variances. For A, Gz = 70 for low genetic variance of z and Gz = 80 for high genetic variance of z. For

B, Gx = 0.9 for low genetic variance of x and Gx = 1 for high genetic variance of x (and Gz = 80 for both). For

C, χ= 0.9 for low maternal power and χ= 1 for high maternal power (and Gz = 80 for both). For D, sequential

contest and simultaneous contest (and Gz = 70 for both).
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Figure S14: Conflict dissolution with low genetic variance of reproductive effort. The genetic system is hap-

lodiploid and only females help. Analogous plots to Fig. S12F,H,I,J. Same parameter values except that here

f1 = 6, f2 = 12, f2 = 60, and Gx =Gy =Gz = 1.
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