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Abstract— Particle swarm optimization (PSO) is a swarm
intelligence technique originally inspired by models of flocking
and of social influence that assumed homogeneous individuals.
During its evolution to become a practical optimization tool,
some heterogeneous variants have been proposed. However,
heterogeneity in PSO algorithms has never been explicitly
studied and some of its potential effects have therefore been
overlooked. In this paper, we identify some of the most relevant
types of heterogeneity that can be ascribed to particle swarms.
A number of particle swarms are classified according to the
type of heterogeneity they exhibit, which allows us to identify
some gaps in current knowledge about heterogeneity in PSO
algorithms. Motivated by these observations, we carry out an
experimental study of two heterogeneous particle swarms each
of which is composed of two kinds of particles. Directions
for future developments on heterogeneous particle swarms are
outlined.

I. INTRODUCTION

Swarm intelligence systems are very often designed using

elements inspired by (or directly taken from) models of nat-

ural systems composed of numerous entities that collectively

exhibit complex behaviors [1], [2]. Examples of this are

ant colony optimization [3] and particle swarm optimization

(PSO) [4], [5], [6], [7]. While the development of the former

was influenced by models of ant foraging [8], the latter was

inspired by behavioral models of bird flocking [9] and by

models of social influence and culture dissemination [10],

[11], [12]. In the vast majority of these models, it is assumed

that the group is composed of homogeneous individuals.

Models that consider populations of homogeneous indi-

viduals are attractive because of their conceptual simplicity.

However, heterogeneity is ubiquitous in nature [13]. It ranges

from intra-species behavioral variations caused by morpho-

logic or age differences, as in the case of social insects [14],

to examples of inter-species cooperation, such as symbiosis.

These phenomena are more easily and accurately modeled

with populations of heterogeneous individuals (cf. [15]).

Heterogeneous systems have started to draw the attention of

researchers working in different areas of swarm intelligence

because designing task-specific agents is often easier than

designing versatile, multipotent ones [16], [17].

In this paper, we are concerned with particle heterogeneity

in PSO algorithms. Although some existing algorithms dis-

play some kind of heterogeneity, this design feature has never

been explicitly dealt with. After briefly presenting some basic

PSO algorithms in Section II, we present our first contribu-

tion in Section III, which is a taxonomy of heterogeneous
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PSO algorithms based on the differences between particles at

the level of their neighborhood size, their model of influence,

and their update rule and its parameterization. A second

contribution, also presented in Section III, is the identification

of gaps in the current knowledge about the behavior and

performance of heterogeneous PSO algorithms. This is done

through the classification of several PSO variants according

to the defined taxonomy. This analysis revealed that the

study of heterogeneous PSO algorithms in which particles

use different models of influence has not been addressed

in the literature yet. Our third contribution, presented in

Section IV, is an empirical study of two heterogeneous PSO

algorithms composed of two different kinds of particles.

This study is intended both to fill the gap on model-of-

influence heterogeneity and to improve our understanding

of heterogeneous PSO algorithms in general. The results

obtained show that the performance of a heterogeneous

PSO algorithm of the kind studied here depends on the

relative proportions of particles of different kinds in the

swarm. Compared to swarms of homogeneous particles, a

heterogeneous PSO algorithm typically performs better than

the worst homogeneous swarm and, in some cases, it can

have a better performance than the best homogeneous swarm.

These results may serve as a baseline for future developments

related to heterogeneity in particle swarm optimization, as

discussed in Section V.

II. PARTICLE SWARM OPTIMIZATION

PSO is a population-based stochastic optimization tech-

nique in which individuals (called particles) move in the

solution space of an n-dimensional objective function f .

There are three vectors associated to a particle i: its position

vector xi, which represents a candidate solution, its velocity

vector vi, representing the particle’s search direction, and

its personal best vector pi, which denotes the particle’s

best-so-far position in the search space. The movement of

a particle is socially mediated, that is, it depends on the

search history of a set of particles called informers which

are selected from its neighbors. Good points in the search

space are communicated and used by other particles to guide

their search. Thus, contrary to what happens in evolutionary

algorithms, individuals in a particle swarm cooperate with

each other in order to find better solutions in the fitness

landscape.

The behavior of a particle swarm depends on at least

three factors: (i) the population topology, which defines the

neighborhood relations among particles, (ii) the model of

influence, which defines the mechanism to select, from each

particle’s neighbors, the set of particles that act as informers,

and (iii) the update rule, used to compute the next position of
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the particle using information from its informers. In the stan-

dard PSO algorithm [18], for example, the above-mentioned

factors are instantiated as follows: (i) fully-connected graphs

or rings (respectively known as gbest and lbest models in

the PSO parlance) as population topologies, (ii) a best-of-

neighborhood model of influence such that only the best

particle in the neighborhood and the particle itself are taken

as informers, and (iii) an update rule for the jth component

of the ith particle’s velocity and position vectors given by

vt+1
i,j = wvt

i,j + φ1ε1

(
pt

g(i),j − xt
i,j

)
+ φ2ε2

(
pt

i,j − xt
i,j

)
,

(1)

and

xt+1
i,j = xt

i,j + vt+1
i,j , (2)

where w is a parameter called inertia weight, φk are pa-

rameters called acceleration coefficients, εk are independent

uniformly distributed pseudorandom numbers in the range

[0, 1), and g(i) is particle i’s best neighbor’s index.

Different settings for the population topology, the model

of influence, or the update rule give rise to different PSO

algorithms. As population topologies, two-dimensional lat-

tices, small-world networks or random graphs are among the

possible choices for replacing the standard fully-connected or

ring graphs [19], [20]. Likewise, an alternative to the best-of-

neighborhood model of influence can be implemented. The

most salient example is Mendes’ fully-informed model [21],

in which a particle is informed by all of its neighbors. The

fully-informed model can be implemented as follows:

vt+1
i,j = wvt

i,j +

Ki∑
k=1

φkεk

(
pt

l(i,k),j − xt
i,j

)
, (3)

where Ki is particle i’s total number of informers and l(i, k)
is the index of the kth informer of the ith particle. Other

models of influence, such as choosing as informers some

neighbors at random [22] or with a probability proportional

to their “attractiveness” (defined in different ways) have also

been proposed (cf. [21]).

Lastly, different update rules, which encode the mecha-

nism for combining information from a particle’s informers,

can be devised. For example, bare bones PSO algorithms

replace the traditional update rules based on velocities by

a mechanism whereby a particle’s next position is sampled

from a probability distribution built on the informers’ per-

sonal bests. Kennedy’s Gaussian bare bones PSO [22] uses:

xt+1
i,j = N

(
pi,j + pg(i),j

2
, |pi,j − pg(i),j |

)
, (4)

where N(μ, σ) represents a number drawn from a normal

distribution with mean μ and standard deviation σ.

PSO literature abounds with refinements, adjustments and

sometimes completely different approaches to the basic al-

gorithm. However, most of them follow the homogeneous

population paradigm. In the next sections, we explore the

concept of particle heterogeneity in PSO algorithms and its

practical consequences.

III. HETEROGENEOUS PARTICLE SWARMS

The standard PSO algorithm [18], whether in its gbest or

lbest version, is a homogeneous swarm. Indeed, all parti-

cles have the same number of neighbors, choose informers

according to the same model of influence and modify their

velocities applying the same update rules. Furthermore, the

parameters of the velocity update rule (w, φk) are the same

for all particles.

Even though neighborhood sizes, models of influence,

update rules and their parameters are properties of the

swarm as a whole in the standard PSO, nothing prevents

us from instantiating them at the individual level, thus

introducing heterogeneity. We say that a particle swarm is

heterogeneous if it has at least two particles that differ

in any of the above-mentioned aspects. For convenience,

we call a particular instantiation of these elements, at the

individual level, a particle’s configuration. Depending on the

nature of the differences between particles’ configurations,

different kinds of heterogeneity can be identified. If particles

change configuration over time we qualify the resulting

heterogeneity as dynamic, otherwise it is said to be static.

Adaptive particle swarms at the individual level build on

dynamic heterogeneity by triggering configuration changes

as a response to some event caused by the behavior of the

swarm, thus “guiding” the otherwise random dynamism.

Differences along any of the different aspects of a par-

ticle’s configuration give rise to a taxonomy based on four

types of heterogeneity. These differences are described in the

following subsections.

A. Neighborhood heterogeneity

Neighborhood heterogeneity appears when particles have

different neighborhood sizes. This kind of heterogeneity

occurs when the population topology is not a regular graph,

that is, when nodes have different degrees.

This type of heterogeneity allows some particles to be

potentially more influential in the collective search process

than others. Neighborhood heterogeneity can be identified in

several PSO algorithms, a selection of which is shown in

chronological order in Table I.

It is possible to quantify the levels of heterogeneity

in swarms that belong to this class. Perhaps the simplest

measure of neighborhood heterogeneity is the range of the

particles’ neighborhood size, which can go from 1 to the

size of the swarm. A study on the relationship between

neighborhood sizes and their effects on a swarm of 20

particles has been carried out by Kennedy and Mendes [20],

[31], [24]. However, the size of a swarm has a strong effect

on the level of neighborhood heterogeneity. The larger the

swarm the larger the range of the particles’ neighborhood

size can be. A systematic study on the effects of different

levels of neighborhood heterogeneity in swarms of various

sizes is missing in the literature.

B. Model-of-influence heterogeneity

This type of heterogeneity occurs when particles in a

swarm use different mechanisms for choosing their inform-
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TABLE I

PARTICLE SWARM OPTIMIZERS WITH NEIGHBORHOOD HETEROGENEITY

Main feature(s) Type Reference(s)

Wheels, small-world and
random topologies

Static Kennedy [19]

Inter-particle distance-based
neighborhoods

Adaptive Suganthan [23]

Topologies with different
average degree

Static Kennedy & Mendes [20], [24]

Variable neighborhood size
according to performance

Adaptive Zhang et al. [25]

Directed tree-like topology Dynamic Janson & Middendorf [26]

Random neighborhood size Dynamic Mohais et al. [27], [28]

Neighborhoods based on
Delaunay triangulation

Adaptive Lane et al. [29]

Random and distance-based
neighborhoods

Dynamic Akat & Gazi [30]

TABLE II

PARTICLE SWARM OPTIMIZERS WITH UPDATE RULE HETEROGENEITY

Main feature(s) Type Reference(s)

Predator and prey particles Static Silva et al. [32]

Neutral and charged parti-
cles

Static Blackwell and Bentley [33]

Fitness-distance-ratio and
standard particles

Static Baskar and Suganthan [34]

Neutral and quantum parti-
cles

Static Blackwell and Branke [35]

Extra central particle Static Liu et al. [36]

Cooperator and defector
particles

Adaptive Di Chio et al. [37]

ers. An example of a swarm with model-of-influence het-

erogeneity could be one in which some of the particles are

informed by the best particle of their neighborhood, while

the others are fully-informed.

To the best of the authors’ knowledge, no particle swarm

with model-of-influence heterogeneity has been proposed or

studied before in the literature. In Section IV, we investigate

the behavior and performance of a swarm with this kind of

heterogeneity.

C. Update-rule heterogeneity

If different particles use different rules for updating their

position in the search space, we say that the swarm exhibits

update rule heterogeneity. Note that this is different from

having all particles using a complicated rule to move in

one of several ways every iteration. The algorithms in this

class exhibit one of the most extreme cases of heterogeneity

because particles can explore the search space in completely

different ways. Update-rule heterogeneity makes it possible

to have groups of specialized particles that perform different

(but complementary) tasks. For example, one group can

explore the search space while another can perform some

form of local search. It is also common to have interaction

rules between particles of different kind. Some of these

algorithms are listed in Table II. The order of presentation

is chronological.

TABLE III

PARTICLE SWARM OPTIMIZERS WITH PARAMETER HETEROGENEITY

Main feature(s) Type Reference(s)

Inter-particle distance-
dependent inertia weight

Adaptive Løvbjerg and Krink [38]

Parameter self-adaptation
inspired by ES

Adaptive Miranda and Fonseca [39]

Adaptive acceleration coef-
ficients

Adaptive Zhang et al. [25]

Different maximum veloci-
ties after restart

Dynamic Pongchairerks et al. [40]

Spatially extended particles
with different properties

Adaptive Monson and Seppi [41]

D. Parameter heterogeneity

Two conditions must be met for parameter heterogeneity

to exist: (i) a group of particles must use the same update

rule, and (ii) at least two of these particles must differ in

their update rules’ parameter settings. A selection of works

that feature PSO algorithms with parameter heterogeneity is

shown in Table III in chronological order.

It is possible to calculate the level of parameter hetero-

geneity in a swarm by measuring the distance of the param-

eter vectors of the particles that compose it. This assumes

update rules to show a smooth transition from one behavior

to another by changing gradually a set of parameters.

IV. EXPERIMENTAL ANALYSIS

We empirically study two heterogeneous PSOs, namely,

one with update rule heterogeneity and one with model-of-

influence heterogeneity . We intend to explore (i) the intra-

swarm interaction among particles with different configura-

tions and (ii) the effects of such interactions on the algo-

rithms’ performance. These two experiments are considered

in order to determine the extent to which the effects observed

with one kind of heterogeneity hold if a different kind of

heterogeneity is used.

A. Setup

The experimental design examines three main factors:

1) Problem. We used ten commonly used benchmark

functions1. In each replication, the functions’ optima

were shifted at random within the defined search range.

In all cases, we used their 100-dimensional versions.

All algorithms were run 100 times on each problem

for up to 106 function evaluations.

2) Particle configurations. Two cases were considered:

(i) swarms with update rule heterogeneity composed

of particles using a classic velocity-based or a Gaus-

sian bare bones update rule (see Section II) and (ii)

swarms with model-of-influence heterogeneity com-

posed of particles using a best-of-neighborhood or a

fully-informed strategy to select their informers. For

these swarms, the update rule is that of the standard

1For their mathematical definition and the complete set of results, we
refer the interested reader to
http://iridia.ulb.ac.be/supp/IridiaSupp2008-020/
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PSO [18]. We ran experiments with fully-connected

and ring topologies. In our setup, neighborhoods are

closed, i.e. particles belong to their own neighbor-

hoods. The velocity-based best-of-neighborhood and

the fully-informed particle swarms were implemented

using Clerc and Kennedy’s constriction method [42],

so that w = 0.7298 and
∑

k φk = 4.1w [6].

3) Population size. We used swarms of 10, 102, and 103

particles. Each particle is initialized as being of one

kind with probability p ∈ {0.2, 0.5, 0.8}. For instance,

in our experiment with best-of neighborhood and fully-

informed particles, 3 swarm compositions result: p =
0.5 produces, on average, unbiased swarms (50% best-

of-neighborhood – 50% fully-informed), while p = 0.2
and p = 0.8 produce, on average, biased swarms

(20%–80% and 80%–20%, respectively).

We study the contribution of each kind of particle to

the improvement of the best-so-far solution over time. An

improvement occurs when a particle finds a better solution

than the best-so-far, regardless of how much better it is.

After t function evaluations, we compute the proportion of

improvements due to a specific particle type in the last k

improvements. In our experiments, k = 10�log(t)� in order

to have more stable measurements, especially towards the

maximum number of function evaluations. In the case of

dual-particle-type swarms, computing this measure for one

of the particle types completely describes the contributions

of each type because the contribution of one type (c1) can

be computed from the contribution of the other (c2) using

the relation c1 = 1 − c2.

In the following subsections, we present some of the most

important results obtained.

B. Different update rules: velocity-based & bare bones

swarm

In these experiments, swarms are composed of particles

that use different update rules. The neighborhood size and

the model of influence (best-of-neighborhood) are the same

for all the particles.

Figure 1 shows the contribution of velocity-based particles

to the improvement of the best-so-far solution and the

development of the solution quality over time on Griewank’s

function. The results were obtained using a 10-particle fully-

connected particle swarm.

The proportion of solution improvements due to velocity-

based particles grows over time until reaching a maximum

after around 500 function evaluations. Afterwards, their con-

tribution starts decreasing until reaching a value close to the

initial one. The initial level reflects the distribution of parti-

cles in the swarm. In a dual-particle-type swarm with a 20%–

80% particle distribution, a contribution level of the first kind

of particle equal to 0.2 means that none of the particle types

dominates the other. This behavior is observed in biased and

unbiased swarms; however, the magnitude of the changes

depends on the swarm composition. With 80% bare bones

swarms, the growth of the contribution of the velocity-based
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Fig. 1. Statistic: Sample mean (100 runs). Problem: Griewank, 100
dimensions. Topology: Fully-connected. Swarm size: 10 particles. The
contribution of the particles using the velocity-based update rule to the
improvement of the best-so-far solution is shown in the upper part of
the figure. The three dotted lines correspond to the three different swarm
compositions used in the experiments (20%–80%, 50%–50%, 80%–20%).
The development of the solution value over time is shown in the bottom
part of the figure.

component is more pronounced than in 50% or 20% bare

bones swarms. The lower part of the figure shows the solution

quality improvement over time. The results obtained with

the homogeneous particle swarms are included for reference.

During approximately 15, 000 function evaluations, the bare

bones particle swarm performs worse than the standard

velocity-based PSO algorithm. However, the situation is the

opposite afterwards, until the maximum number of functions

evaluations is reached. The tested heterogeneous particle

swarms show an intermediate performance that is biased

according to the swarm’s composition. For example, the

performance of the swarm with more velocity-based particles

than bare bones particles is closer to that of the particle

swarm with velocity-based particles only.

Figure 2 shows another example of the behavior of a

particle swarm with static update rule heterogeneity, in

this case, on Rastrigin’s function. The results shown were

obtained using 10 particles and a fully-connected topology.

As before, the contribution of velocity-based particles grows

over time up to a maximum that occurs, in this case,

around 1, 000 function evaluations to later decrease and
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Fig. 2. Statistic: Sample mean (100 runs). Problem: Rastrigin, 100
dimensions. Topology: Fully-connected. Swarm size: 10 particles. The
contribution of the particles using the velocity-based update rule to the
improvement of the best-so-far solution is shown in the upper part of
the figure. The three dotted lines correspond to the three different swarm
compositions used in the experiments (20%–80%, 50%–50%, 80%–20%).
The development of the solution value over time is shown in the bottom
part of the figure.

reach a level similar to the initial one. In terms of solution

quality improvement over time, the homogeneous bare bones

particle swarm is outperformed by the velocity-based one.

The performance of the heterogeneous particle swarms is

intermediate between the two homogeneous extremes.

Table IV shows the ranking of the solution quality after

106 function evaluations obtained by all the algorithms tested

in this experiment. The results are grouped by problem, pop-

ulation topology and population size. Of the 60 conditions

tested, in 13 cases a heterogeneous particle swarm was the

best ranked and in 6 cases it was the worst. Heterogeneous

swarms have, in most cases, intermediate ranks. The median

and the interquartile range of the rank distribution across

problems and population sizes are shown at the bottom of the

table. From their inspection, we can conclude that the relative

ranking of the homogeneous swarms is highly sensitive to

changes in the population topology and size. The rankings

of heterogeneous swarms are quite stable to both kind of

changes, which suggests that they are more robust.

TABLE IV

RANKING OF THE SOLUTION QUALITY OBTAINED BY SWARMS WITH

AND WITHOUT UPDATE RULE HETEROGENEITY AFTER 10
6 FUNCTION

EVALUATIONS1

Problem Particles
Fully-connected Ring

BB BBB U BV V BB BBB U BV V

Ackley
10

1 5 4 3 2 1 5 4 3 2 1

10
2 5 4 2 1 3 5 4 3 2 1

10
3 5 4 2 3 1 5 4 3 2 1

Griewank
10

1 1 2 3 4 5 1 2 4 3 5

10
2 1 2 3 4 5 5 2 4 3 1

10
3 5 1 4 2 3 5 4 3 2 1

Rastrigin
10

1 5 4 2 3 1 5 4 3 2 1

10
2 1 2 3 4 5 3 5 4 2 1

10
3 3 1 2 4 5 5 4 3 2 1

Rosenbrock
10

1 2 1 5 4 3 5 4 3 2 1

10
2 5 4 2 3 1 5 4 3 2 1

10
3 5 4 3 1 2 5 4 3 2 1

Salomon
10

1 1 2 3 4 5 1 2 3 4 5

10
2 1 2 3 4 5 5 4 3 2 1

10
3 5 4 3 2 1 5 4 3 2 1

Schaffer
10

1 1 2 3 4 5 1 2 5 4 3

10
2 2 3 1 4 5 5 4 3 2 1

10
3 5 4 3 2 1 5 4 3 2 1

Schwefel
10

1 5 4 3 2 1 5 4 3 2 1

10
2 5 4 3 2 1 5 4 3 2 1

10
3 5 4 3 2 1 5 4 3 2 1

Sphere
10

1 1 2 3 4 5 4 5 3 1 2

10
2 5 2 3.5 1 3.5 5 2 1 4 3

10
3 5 4 3 2 1 5 4 3 2 1

Step
10

1 5 4 3 2 1 5 4 3 2 1

10
2 5 4 3 2 1 5 4 3 2 1

10
3 5 4 3 1 2 5 4 3 2 1

Weierstrass
10

1 3 1 2 4 5 4 5 3 2 1

10
2 2 3 5 4 1 2 1 3 5 4

10
3 5 4 3 1.5 1.5 5 4 3 2 1

Summary
Median 5 4 3 2.5 2 5 4 3 2 1

IQR 3 2 0 2 4 0 0 0 0 0

1 BB, BBB, U, BV, and V stand for bare bones, biased bare bones,
unbiased, biased velocity-based, and velocity-based respectively. IQR
stands for interquartile range.

C. Different models of influence: best-of-neighborhood &

fully-informed swarm

The results presented in this section were obtained by

swarms composed of particles with the same neighborhood

size and update rules but with different models of influence.

Figure 3 shows the contribution of particles using the best-

of-neighborhood model of influence to the improvement of

the best-so-far solution and the development of the solution

quality over time on Ackley’s function. These results were

obtained using 10 particles and a fully-connected topology.

The contribution of the particles using the best-of-

neighborhood model of influence starts decreasing, reaches

a minimum at around 400 function evaluations and then

starts increasing again to reach a maximum at around 3000
function evaluations. It then decreases again but stabilizes

at a value higher than the initial one. This behavior is

richer than the one observed for update rule heterogeneity.

In fact, these richer interactions lead, in the case of the

swarm biased toward the best-of-neighborhood model, to an

overall performance that is better than the performance of

the best of the two homogeneous particle swarms. However,
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Fig. 3. Statistic: Sample mean (100 runs). Problem: Ackley, 100 dimen-
sions. Topology: Fully-connected. Swarm size: 10 particles. The contribution
of the particles using the best-of-neighborhood model of influence to the
improvement of the best-so-far solution is shown in the upper part of
the figure. The three dotted lines correspond to the three different swarm
compositions used in the experiments (20%–80%, 50%–50%, 80%–20%).
The development of the solution value over time is shown in the bottom
part of the figure.

this behavior is not typical for the whole set of functions

and dimensionalities. As in the previous example, the typical

result is to have an intermediate performance between those

obtained by homogeneous swarms. This can be seen in

Figure 4, which shows the contribution of particles using

the best-of-neighborhood model of influence to the im-

provement of the best-so-far solution and the development

of the solution quality over time on Salomon’s function.

The results shown were obtained using 10 particles and

a fully-connected topology. In this case, the contribution

of best-of-neighborhood particles decreases over time until

it reaches a minimum at around 300 function evaluations

and then increases again until stabilization at around 5, 000
function evaluations. The solution quality reached by any

heterogeneous particle swarm is clearly in between the one

reached by the homogeneous swarms, except during the first

function evaluations in which the performance of the fully-

informed particle swarm is indistinguishable from the one of

the heterogeneous swarms.

The ranking of the algorithms’ solution quality after 106
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Fig. 4. Statistic: Sample mean (100 runs). Problem: Salomon, 100 dimen-
sions. Topology: Fully-connected. Swarm size: 10 particles. The contribution
of the particles using the best-of-neighborhood model of influence to the
improvement of the best-so-far solution is shown in the upper part of
the figure. The three dotted lines correspond to the three different swarm
compositions used in the experiments (20%–80%, 50%–50%, 80%–20%).
The development of the solution value over time is shown in the bottom
part of the figure.

function evaluations is shown in Table V. In this case, in 25

cases a heterogeneous particle swarm was the best ranked

and in 4 cases it was the worst. In this experiment, the

ranking of the homogeneous swarms is highly dependent on

the population topology used. This is already a well-known

effect, especially for the fully-informed PSO algorithm [31],

[43]. The value of the interquartile range of the distribution

of ranks across problems and population sizes reveals that

heterogeneous swarms, specially the unbiased ones, are more

stable to changes in the population topology and size.

V. DISCUSSION AND OUTLOOK

We say that a PSO algorithm is heterogeneous if at least

two of its constituent particles differ in their configurations,

that is, if they differ in at least one of four factors: (i) their

neighborhood sizes, (ii) their models of influence, (iii) their

update rules or (iv) their update rules’ parameters. Particles

with different configurations will behave differently, but such

difference may not be significant from a statistical point of

view. In this work we are more interested in identifying the

most relevant types of heterogeneity that a PSO algorithm
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TABLE V

RANKING OF THE SOLUTION QUALITY OBTAINED BY SWARMS

WITH AND WITHOUT MODEL OF INFLUENCE HETEROGENEITY

AFTER 10
6 FUNCTION EVALUATIONS1

Problem Particles
Fully-connected Ring
F BF U BB B F BF U BB B

Ackley
10

1 5 4 2 1 3 4 2 1 3 5

10
2 5 4 3 2 1 2 1 3 4 5

10
3 5 4 3 2 1 1 2 3 4 5

Griewank
10

1 5 4 3 2 1 5 4 3 2 1

10
2 5 4 3 2 1 5 2.5 4 2.5 1

10
3 5 4 3 2 1 1 2 3 4 5

Rastrigin
10

1 5 4 3 1 2 2 1 3 4 5

10
2 5 4 3 1 2 3 1 2 4 5

10
3 5 1 3 4 2 5 2 1 3 4

Rosenbrock
10

1 5 4 3 2 1 5 4 3 2 1

10
2 5 4 3 1 2 5 1 3 2 4

10
3 5 4 2 1 3 1 2 3 4 5

Salomon
10

1 5 4 3 2 1 5 4 3 2 1

10
2 5 4 3 2 1 5 3 1 2 4

10
3 5 4 2 3 1 2 1 3 4 5

Schaffer
10

1 5 4 3 1 2 5 4 3 2 1

10
2 5 4 3 2 1 5 4 3 2 1

10
3 5 4 3 1 2 5 4 3 2 1

Schwefel
10

1 5 4 3 2 1 2 1 4 5 3

10
2 5 4 3 2 1 5 4 3 2 1

10
3 5 4 3 2 1 5 4 3 2 1

Sphere
10

1 5 4 3 2 1 4 3 5 1 2

10
2 5 4 3 1 2 4 2.5 1 2.5 5

10
3 5 4 2 1 3 1 2 3 4 5

Step
10

1 5 4 3 2 1 2 1 3 5 4

10
2 5 4 3 2 1 1 2 3 4 5

10
3 4 5 3 2 1 1 2 3 4 5

Weierstrass
10

1 5 4 3 1 2 5 4 3 1.5 1.5

10
2 5 4 2 3 1 1 5 3.5 3.5 2

10
3 5 1.5 1.5 4 3 1 2 3 4 5

Summary
Median 5 4 3 2 1 4 2 3 3 4

IQR 0 0 0 1 1 3.75 2 0 2 4

1 F, BF, U, BB, and B stand for fully-informed, biased fully-
informed, unbiased, biased best-of-neighborhood, and best-of-
neighborhood respectively. IQR stands for interquartile range.

can exhibit than identifying the differences that produce

statistically significant behavioral dissimilarities. Future re-

search should be oriented towards this latter goal.

One of the results of our analysis is that the nature of

the differences between particles is not the only factor that

determines the performance of a heterogeneous PSO algo-

rithm. The relative composition of the swarm plays a major

role in this respect. Our results show that, independently

of the swarm size, the performance of heterogeneous PSO

algorithms depends on the proportion of the swarm that is

of a particular particle type. Consequently, the typical per-

formance of a heterogeneous PSO algorithm is intermediate

with respect to the homogeneous cases. This is not necessar-

ily negative because this means that heterogeneous swarms

are more robust than homogeneous swarms. According to our

results, a heterogeneous PSO algorithm will usually exhibit a

better performance than the worst performing homogeneous

PSO algorithm. Using a heterogeneous swarm thus reduces

the risk of using a homogeneous swarm that is unfit for the

problem at hand.

Another result of the experimental analysis is the iden-

tification of some interesting interactions between particles

of different kind. The contribution profile of each kind

of particle revealed that particles of different kind indeed

contribute differently to the improvement of the best-so-far

solution. This means that the interaction between particles

of different kind is not at all random; on the contrary, some

particles contribute to the solution improvement differently

during the optimization process. These results point towards

the idea that adapting the proportion of particles of different

types during the optimization process could be beneficial.

Future work should be aimed at studying this topic.

From a practical point of view, heterogeneity has a number

of consequences. Perhaps the most important is that it seems

easier to design PSO algorithms with the right balance of

exploration and exploitation by changing the number of

exploratory particles, than designing sophisticated update

rules to make particles capable of doing both things. This

means that heterogeneity enables designers to move design

complications from the individual level to the swarm level.

VI. CONCLUSIONS

The design of swarm intelligence systems consisting of nu-

merous dynamically interacting entities is a difficult task. In

an effort to simplify this problem, researchers have assumed

that the constituent entities of a system are all identical.

While dealing with homogeneous populations can indeed

simplify the design task in some cases, it can also make it

more difficult in others. The alternative to the homogeneous

approach is to consider populations of heterogeneous agents

in which some of them can be specialized in some particular

task or exhibit a particular behavior.

In this paper, we examined the PSO literature and clas-

sified several works according to a taxonomy that considers

the most relevant types of heterogeneity that can be found

in this kind of algorithms. Our analysis showed that differ-

ent types of heterogeneity have been used before in PSO.

However, heterogeneity at the level of the mechanism used

by particles to select the neighbors that effectively influence

their movement had remained unexplored until now. More-

over, the study of heterogeneity in PSO has not been done

systematically, and therefore, gaps in our understanding of

the effects of heterogeneity in PSO algorithms still exist.

A series of experiments with static dual-particle-type PSO

algorithms were carried out. The results show that, typically,

heterogeneous swarms perform better than the worst homo-

geneous swarm and that, in some cases, they can outperform

the best performing homogeneous swarm.
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