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Università della Svizzera Italiana - USI, Switzerland

jorge.pena@alari.ch

Andres Upegui, Eduardo Sanchez
Reconfigurable Digital Systems Group RDSG

Ecole Polytechnique Fédérale de Lausanne - EPFL, Switzerland
andres.upegui@epfl.ch, eduardo.sanchez@epfl.ch

Abstract

Self-reconfigurable adaptive systems have the possibility
of adapting their own hardware configuration. This feature
provides enhanced performance and flexibility, reflected in
computational cost reductions. Self-reconfigurable adapta-
tion requires powerful optimization algorithms in order to
search in a space of possible hardware configurations. If
such algorithms are to be implemented on chip, they must
also be as simple as possible, so the best performance can
be achieved with the less cost in terms of logic resources,
convergence speed, and power consumption. This paper
presents an hybrid bio-inspired optimization technique that
introduces the concept of discrete recombination in a parti-
cle swarm optimizer, obtaining a simple and powerful algo-
rithm, well suited for embedded applications. The proposed
algorithm is validated using standard benchmark functions
and used for training a neural network-based adaptive
equalizer for communications systems.

1 Introduction

On-line and on-chip adaptation in self-reconfigurable

hardware systems provide architectural flexibility, allowing

the chip to adapt dynamically and autonomously to changes

in its environment [16, 18]. A popular approach for build-

ing adaptive circuits is by means of bio-inspired techniques.

Evolvable Hardware (EHW) tackles this problem by using

Evolutionary Algorithms (EAs): inspired in the process of

natural evolution, a population of circuits is incrementally

improved through the application of genetic operators (se-

lection, recombination, and mutation).

From an algorithmical point of view, EAs are nothing

but stochastic population-based optimization techniques.

A population-based optimization algorithm is characterized

for keeping a population or set of solutions in memory.

The algorithm produces populations of solutions sequen-

tially from an initial population P0 to a final population PG,

deriving the new population from the current one through

the use of a manipulation function [7]. If, additionally, the

manipulation function is non deterministic, the algorithm is

said to be stochastic. In the case of EAs, the manipulation

function consists in the merged application of the genetic

operators. As they generally include randomness, the result

is a stochastic manipulation function.

EAs have been largely used in adaptive hardware mainly

because of the analogy between the genome representa-

tion in a genetic algorithm and the configuration bit-string

in a reconfigurable logic device. However, different algo-

rithms can also be used as long as they provide the neces-

sary search capabilities.

Particle swarm optimizers constitute another group of

stochastic population-based optimization algorithms. Parti-

cle Swarm Optimization (PSO) is a bio-inspired technique,

founded on the social behavior of bird flocking and the idea

of culture as an emergent process [6]. In PSO, a swarm or

population of solutions “fly” through the search space ac-

cording to certain stochastic velocity update rules, produc-

ing new sets of solutions in subsequents time steps. The

population of solutions is thus “evolved” through the appli-

cation of a certain non deterministic manipulation function,

as EAs do.

Given the similarities between the two optimization ap-

proaches, it is natural to think of PSO as an alternative to

EAs for carrying out adaptation in EHW. Some prelimi-
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nary steps have already been taken in this direction. PSO

has been used, for instance, in the context of evolutionary

circuit design [3, 7, 10] and in the problem of placement

and routing in FPGAs [4, 17]. However, to the best of our

knowledge, PSO has not already been used for on-line on-
chip hardware adaptation or evolution.

When intending to implement on-line and on-chip hard-

ware adaptation, one must consider the computational com-

plexity of the involved search algorithms. This paper

presents a simple, hybrid algorithm that takes the con-

cept of recombination of EAs to incorporate it into the

original scheme of PSO. The proposed algorithm is hard-
ware friendly, being suitable for efficient implementation

either in an embedded processor or dedicated hardware: it

does not use multiplications and requires a minimal random

number generator (RNG).

The new algorithm has been conceived targeting the

adaptation of a society of agents embedded in a self-

reconfigurable adaptive platform. Each of these agents can

be, for instance, a channel equalizer in a communication

system. Our hardware setup consists of a population of

neural networks with material existence in an FPGA, be-

ing evaluated and adapted on-line by the proposed algo-

rithm running in an embedded microprocessor. This con-

trasts with existing solutions to adaptive channel equaliza-

tion, where a single equalizer is adapted through supervised

learning [13] or a genetic algorithm [11, 12].

Our approach is bio-inspired at two levels: at the com-
puting engine level and at the adaptation mechanism level.

The computing engine constitutes the problem solver of the

system. The problem at hand, being in this case the channel

equalizer, is implemented as a population of Binary Radial
Basis Functions artificial neural networks, to be described

in section 4. The adaptation mechanism provides the pos-

sibility of modifying the function described by the comput-

ing engine. This adaptation is performed by the Particle

Swarm Optimizer with Discrete Recombination algorithm

described in section 3.

In this paper, we compare the new algorithm against the

standard PSO in a rather theoretical experimental setting in-

volving the minimization of four mathematical functions.

Then, we present some preliminary results in the use of the

method for evolving simple neural networks with binary ac-

tivation functions for channel equalization.

2 Particle Swarm Optimization

In PSO, a n-dimensional search space is explored using

a swarm of M particles, seeking to minimize an objective

function f . The particles are connected according to a given

topology. The neighborhood N(j) of the j-th particle is de-

fined as the set of particles connected to it. Two topologies

have been traditionally used in the literature: the lbest topol-

ogy and the gbest topology. In the lbest topology particles

are organized in a circular array, the neighborhood of a par-

ticle comprising its adjacent neighbors with or without the

particle itself. In the gbest topology, all the particles are

connected together, so that the neighborhood of every par-

ticle is the whole swarm. The type of the topology defines

the way information will be exchanged among the particles

and the robustness of the algorithm [8].

Three kinds of information characterize each particle of

the swarm in a given time step t: its position xt
j , its velocity

vt
jand its personal best (pbest) pt

j , the best position it has

found so long.

At time step t + 1, each particle calculates its new ve-

locity using a given velocity update rule. Traditionally, this

update rule takes into account: (a) the particle’s velocity at

time step t, (b) its personal best, pt
j and (c) its neighborhood

best, the best position found so far by the particle’s neigh-

bors . The neighborhood best is defined for each particle j
as

pt
b(j) = arg min

l∈N(j)

(
f(pt

l)
)
. (1)

In the case of a gbest topology, where the neighbor-

hood of each particle is the population itself (N(j) =
{1, 2, . . . , M}), the neighborhood best is the same for all

the particles. It is called global best (gbest), and is repre-

sented by pt
g .

The inertia weight update rule [15] modifies the parti-

cle’s velocity according to:

vt+1
j = w · vt

j + U [0, ϕ1] · (pt
j − xt

j)

+U [0, ϕ2] · (pt
b(j) − xt

j), (2)

where w is the inertia weight, U [lower, upper] is a vec-

tor of uniformly distributed random values between lower
and upper, and ϕ1 and ϕ2 are acceleration constants usu-

ally set to 2. The velocities are normally clamped by means

of a damping function Γ(·) , implemented component-wise

as follows:

Γ (vji) =

⎧⎪⎨
⎪⎩

vmax if vji > vmax

−vmax if vji < −vmax

vji otherwise

(3)

After having calculated its new velocity applying Eq. 2

and 3, each particle updates its position by applying:

xt+1
j = xt

j + vt+1
j . (4)

3 PSODR: Particle Swarm Optimization
with Discrete Recombination

The standard PSO algorithm has a number of features

that make it suitable for embedded applications. It is simple
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enough to be implemented in software, or directly in hard-

ware. Still, it requires 3 multiplications and the generation

of 2B random bits per particle and per dimension, where B
is the bit resolution of ϕ1 and ϕ2. Thus, a total amount of

3Mn multiplications and 2BMn randomly generated bits

are required per iteration of the algorithm. For some critical

applications, this can be prohibitive in terms of area, power

consumption and/or performance.

PSODR was designed bearing in mind a complete avoid-

ance of multiplications and a reduction of the number of

randomly generated bits to a minimum. The proposed

model incorporates the notion of discrete recombination

as used in Evolution Strategies [2], to the personal bests,

proposing novel velocity update rules and a blend of lbest
and gbest topological models.

The idea is to consider lbest neighborhoods without the

self, so that the neighborhood of the j-th particle is com-

prised only of his left and right neighbors in the circular

array:

N(j) = {left(j), right(j)} (5)

Within these neighborhoods, a recombinant rt
j is generated

by coordinate-wise random selection from the correspond-

ing coordinate values of the two neighbors:

rji =

{
pleft(j)i if RAND() = 0
pright(j)i otherwise

(6)

where RAND() is a 1-bit (0 or 1) random number.

One can think of at least two modifications to the inertia
weight update rule of Eq. 2 using this recombinant target.
The first one replaces the neighborhood best by the recom-

binant while keeping the personal best:

vt+1
j = w · vt

j + ϕ1 · (pt
j − xt

j) + ϕ2 · (rt
j − xt

j). (7)

The second one replaces the personal best by the recombi-

nant while keeping the neighborhood best:

vt+1
j = w · vt

j + ϕ1 · (rt
j − xt

j) + ϕ2 · (pt
b(j) − xt

j). (8)

Notice the replacement of the random variables U [0, ϕ1]
and U [0, ϕ2] of the original algorithm by the fixed con-

stants ϕ1 and ϕ2. This fact allows an important simplifica-

tion of the necessary RNG, given that only Mn random bits

need to be generated per iteration (to produce the recombi-

nants).

Taking into account the typical choices of ϕ1 = ϕ2 = 2
in the standard PSO and the fact that the expected value of

U [0, 2] is equal to 1, ϕ1 = ϕ2 = 1 reveals as a natural

choice for the update rules of Eq. 7 and Eq. 8. This choice

eliminates two of the multiplications required in the original

algorithm. If, in addition to that, a constant inertia weight

of 0.5 is assumed, PSODR can be implemented without the

need of any multiplier: a multiplication by 0.5 is just a right

shift operation.

We consider two PSODR models: the lbest model and

the gbest model. The first one uses a lbest topology and a

velocity update rule given by Eq. 7. The second one uses a

lbest topology to calculate the recombinant rt
j , but a gbest

topology to calculate the neighborhood best. The pseu-

docode of the algorithm is shown is shown in the Alg. 1.

Algorithm 1 PSODR

procedure PSODR(METHOD)

Initialize positions, velocities and personal bests

repeat
for each particle j in the population do

if f(xj) < f(pj) then
pj = xj

if method is gbest then
if f(pj) < f(pg) then

g = j
end if

end if
end if
for each dimension i do

r = RAND()
if r = 0 then

k = left(j)
else

k = right(j)
end if
if method is gbest then

vji = w ·vji+(pki−xji)+(pgi−xji)
else(method is lbest)

vid = w ·vji+(pki−xji)+(pji−xji)
end if
vji ∈ (−Vmax, Vmax)
xji = xji + vji

end for
end for

until termination condition is reached

end procedure

4 Binary Radial Basis Functions

Artificial neural networks (ANNs) are structures of

densely interconnected neurons. Each of these neurons re-

ceives an input vector and processes it by passing its inner

product with a weight vector through an activation function
[5]. In practice, ANNs allow to efficiently design any func-

tion by setting the correct parameters (weights). This effi-

ciency is provided thanks to their cellular architecture and

the possibility of applying optimization algorithms (learn-

ing or evolution) to find the correct set of parameters. By
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selecting the correct weights, using the PSODR algorithm

for instance, an ANN can be used as channel equalizer.

Given their cellular nature, ANNs lend themselves to

hardware implementation. However, several practical prob-

lems are faced when implementing them in hardware. Most

neuron models, such as perceptron or radial basis functions,

use logistics, gaussians or other continuous functions as ac-

tivation functions. Additionally, each network connection

(synapses) requires a multiplier for weighting the inputs to

each neuron. Hardware implementation of these functions

results expensive in terms of logic resources. An example

showing the complexity of such hardware systems is, for

instance, the GRD chip, a neural network hardware imple-

mentation in which each neuron of the net is implemented

in a dedicated DSP [12]. That is the reason why several sim-

plified hardware-oriented neuron and network models have

been proposed in the literature [9].

We are mainly interested in simplified low-cost ANNs,

so that an entire population of them could be easily embed-

ded in a commercial FPGA. Given that no supervised learn-

ing is intended, the constraint of having differential activa-

tion functions can be eliminated, and binary activation func-

tions can be considered. One such neural net with binary

activation functions is, for instance, a feedforward neural

network with Heaviside activation functions. Nonetheless,

training this kind of nets could be time consuming, so we

consider instead a binary radial basis function (BRBF) as it

will be described in the following.

In a radial basis function (RBF) net the inputs are applied

to a single layer of neurons, whose outputs feed an output

adder. The j-th neuron calculates a response φj (x) based

on the distance between the center cj of its receptive field

and the input vector x. The closer the input vector to the

center of the receptive field, the higher the output (activa-

tion) of the neuron. Standard RBFs use gaussian activation

functions, so that the output of the j-th neuron is given by

φ (x) = exp

(
−D (x, cj)

2σ2
j

)
(9)

where D(x, cj) is the euclidean distance between x and cj ,

and σj is the width of the receptive field.

The output y of the net is typically given by

y =
J∑

j=1

φj(x) · wj , (10)

where wj is the weight of the output connection correspond-

ing to the j-th neuron, and J is the total number of neu-

rons in the net. An RBF net as the one previously described

is badly suited for resource-optimal hardware implementa-

tion, because of the required multiplications and the neces-

sity of calculating an exponential function.

To have a truly hardware friendly neural net, we propose

a BRBF net in which the activation function is described by

φj (x) =

{
1 if D (x, cj) ≤ σj

0 otherwise
(11)

and the distance function D(x, cj) is the Manhattan dis-

tance function:

D (x, cj) =
∑

i

|xi − cji| (12)

With these definitions, the BRBF net is, basically, a linear
approximator with binary features that does not require any

multiplication nor in the distance calculation nor in the out-

put part (the multiplication by 1 or 0 is trivial) and can thus

be easily implemented in hardware. A schematic view of

the proposed ANN is shown in Fig. 1.

x1

x2

1

2

J

xn

Σ y

w1

w2

wJ

Figure 1. Binary Radial Basis Function

5 Experimental Settings and Results

In order to verify the computational capabilities of the

proposed algorithm and neural network, two sets of experi-

ments were devised. First, the two variants (lbest and gbest)
of the proposed PSODR model were tested against their

standard PSO counterparts in four benchmark minimiza-

tion problems. Then, a population of BRBF neural nets was

evolved using one variant of PSODR to solve the problem

of static channel equalization in a simple communication

system model.

5.1 Benchmark Function Minimization

5.1.1 Experimental Settings

Four functions were used in this experiment. The first func-

tion is the Sphere function, described by

f1(x) =
n∑

i=1

x2
i . (13)

The second function is the Rosenbrock function:

f2(x) =
n−1∑
i=1

100(xi+1 − x2
i )

2 + (xi − 1)2. (14)
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The third test function is the Rastrigin function:

f3(x) =
n∑

i=1

x2
i + 10[1 − cos(2πxi)]. (15)

The fourth test function is the Griewank function:

f4(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos
(

xi√
i

)
+ 1. (16)

For all the four functions, the minimum value is 0.

These functions have been widely used in the literature

to test different EA and PSO-based algorithms (see, for

instance, [1]). The Sphere function is an easy, unimodal

function that any optimization technique should be able to

solve with a good degree of resolution. It helps to identify

good local optimizers. The Rosenbrock function is also uni-

modal, but generally difficult to optimize even for gradient-

based algorithms. The last two functions are multimodal,

having many local minima. They help to test the global op-

timization capabilities of the tested algorithms.

The proposed gbest and lbest versions of the PSODR

models were tested against their standard counterparts, us-

ing swarm sizes of 20, 40 and 80 and dimensions of 10, 20

and 30. For the four algorithms a inertia weight of 0.5 was

used. For the standard models the acceleration constants

were set to ϕ1 = ϕ2 = 2, while for the PSODR mod-

els values of ϕ1 = ϕ2 = 1 were used. Observe that with

this choice of parameters, the PSODR models are hardware

friendly, in the sense pointed out in section 3.

The maximum number of iterations was set to 1000,

1500 and 2000, corresponding respectively to dimension

sizes of 10, 20 and 30.

The positions of the particles were initialized according

to the asymmetric initialization method proposed in [1]. Ta-

ble 1 shows the the initialization ranges and the values of

vmax for each function.

Table 1. Initialization ranges and vmax for each
function

Function Initialization Range vmax

Sphere (50, 100)n 100

Rosenbrock (−100, 100)n 100

Griewank (−600, 600)n 10

Rastrigin (−5.12, 5.12)n 600

5.1.2 Results and Discussion

Tables 2, 3, 4 and 5 list the values of the best solution

found at the final iteration by each method. The following

nomenclature was used: SPSOG (standard gbest PSO), SP-

SOL (standard lbest PSO without the self), PSODRG (gbest
PSODR) and PSODRL (lbest PSODR). The results are av-

eraged over 50 independent runs.

Table 2. Mean fitness values for the Sphere
function
M D SPSOG SPSOL PSODRG PSODRL

20 10 9.03E-39 6.04E-17 1.18E-51 2.77E-38

20 6.07E-24 1.69E-9 1.95E-44 3.06E-30

30 2.24E-18 1.69E-6 1.72E-39 4.65E-27

40 10 2.61E-46 5.75E-18 1.16E-54 1.44E-38

20 3.69E-30 6.95E-10 1.54E-49 1.62E-30

30 1.37E-23 8.96E-7 5.82E-48 3.40E-27

80 10 2.98E-52 2.93E-18 6.38E-57 6.52E-39

20 1.22E-36 3.97E-10 1.83E-52 9.56E-31

30 1.94E-28 4.59E-7 1.35E-52 2.13E-27

Table 3. Mean fitness values for the Rosen-
brock function

M D SPSOG SPSOL PSODRG PSODRL

20 10 31.14 12.70 17.75 9.11

20 80.62 73.84 28.78 30.42

30 157.90 163.18 59.05 88.24

40 10 18.78 6.42 3.79 4.44

20 61.32 27.18 16.68 23.68

30 80.04 74.68 40.84 60.30

80 10 10.40 2.02 1.65 1.93

20 80.82 14.37 3.26 14.53

30 76.98 63.82 19.42 39.86

As it can be seen, one of the two proposed methods al-

ways performed better than the standard methods for the

two unimodal functions. The best method was PSODRG,

obtaining the minimum values in all the cases, except for

Rosenbrock with M = 20 and D = 10, where it was beaten

by PSODRL. The proposed lbest method also performed

better than the standard lbest model.

For the multimodal functions, the best proposed method

performed better than the best standard method in 11 of

the 18 cases. In the Rastrigin function, PSODRG was the

best when dealing with low dimensionalities of the prob-

lem, but SPSOG performed better in higher dimensionali-

ties. PSODRL was always outperformed by SPSOL. For

the Griewank function, the lbest models performed better

than the gbest models. Here, the standard version was bet-

ter when dealing with dimension sizes of 10, while the pro-

posed version was better when dealing with dimension sizes

of 20 and 30. PSODRG performed better than SPSOG in all

the cases for this function.

The proposed gbest PSODR always performed better

than its standard counterpart for the Sphere, Rosenbrock

and Griewank functions and in 5 out of 9 cases in the Ras-

trigin function (low dimensionality of the search space).

On the other hand, the proposed lbest PSODR always per-

formed better than its standard counterpart for the Sphere

function, in the majority of the cases (10 out of 11) for the

Rosenbrock function and the Griewank function (6 out of

9), but worst in all the cases for the Rastrigin function.

Figures 2, 3, 4 and 5 show the learning performance of
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Table 4. Mean fitness values for the Rastrigin
function

M D SPSOG SPSOL PSODRG PSODRL

20 10 8.26 8.68 7.34 15.22

20 35.26 37.24 39.96 75.22

30 77.55 76.43 98.90 148.95

40 10 4.22 5.63 2.99 13.63

20 22.76 30.16 22.60 68.52

30 48.20 64.84 54.66 144.14

80 10 3.02 4.70 1.93 11.54

20 15.90 26.94 11.57 60.80

30 34.50 59.42 35.26 132.58

Table 5. Mean fitness values for the Griewank
function

M D SPSOG SPSOL PSODRG PSODRL

20 10 7.54E-2 4.51E-2 7.16E-2 1.00E-1

20 2.28E-2 6.50E-3 1.26E-2 4.96E-3
30 1.32E-2 5.05E-3 1.29E-2 1.84E-3

40 10 7.60E-2 3.61E-2 5.69E-2 7.35E-2

20 2.25E-2 2.42E-3 1.55E-2 7.94E-4
30 1.69E-2 1.82E-3 5.71E-3 2.84E-4

80 10 6.95E-2 2.12E-2 4.29E-2 4.02E-2

20 2.66E-2 4.12E-4 1.35E-2 6.69E-5
30 1.49E-2 5.52E-4 5.02E-3 7.75E-7

Figure 2. Learning performance for the
Sphere function with M = 20 and D = 30

Figure 3. Learning performance for the
Rosenbrock function with M = 20 and D = 30

the different algorithms for the four tested functions with

M = 20 and D = 30. The curves represent the fitness

of the best solution (f(pt
g)) averaged over 50 runs. Ob-

serve how the PSODR models are characterized by a faster

Figure 4. Learning performance for the Rast-
rigin function with M = 20 and D = 30

Figure 5. Learning performance for the
Griewank function with M = 20 and D = 30

convergence than the SPSO models (except for Rastrigin

function and the lbest case, in which SPSOL converges

faster than PSODRL). In particular, the PSODRG model

converges faster than any of the other methods. It can also

be easily seen that the lbest models converge slower than the

gbest methods. This slower convergence does not pay off in

the unimodal functions, but allows the discovery of better

solutions in one of the multimodal functions (Griewank).

5.2 Channel Equalization of a Digital Communi-
cations System

In a digital communication system, a series of symbols

s(t) is generated in a source and transmitted over a channel

to a receiver. In practice, the channel is not ideal and data is

corrupted with nonlinear distortion, intersymbolic interfer-

ence (ISI) and noise.

One way to alleviate these problems and obtain reliable

data transmission is to use a channel equalizer in the re-

ceiver [14]. The task of the equalizer is to reconstruct the

original signal s(t) from the received signal r(t) or, in other

words, to generate a reconstructed version ŝ(t) of s(t) as

close as possible to it (Fig. 6). The addition of an equal-

izer usually reduces the bit error rate (BER): the ratio of

received bits in error to total transmitted bits.

Traditional adaptive equalization relies on the use of a

linear transversal filter. This filter is generally adjusted us-

ing a known training sequence at the beginning of the trans-
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Channel Equalizer

Decision Device

s(t) ŝ(t)
r(t) y(t)

Figure 6. Communication System Model

mission and LSE or gradient descent to determine the op-

timal set of coefficients for the filter. However, when non-

linear distortion and intersymbolic interference are severe,

nonlinear equalizers such as neural nets can give a better

performance [13]. Nonetheless, the training of these struc-

tures generally involves the use of backpropagation or other

related, computational expensive, supervised techniques.

In [12], Murakawa et al. presented the GRD chip and

used it for adaptive channel equalization. The GRD chip

is a group of 15 DSPs connected in a binary-tree network

that implement a feed forward neural network. The net is

reconfigured and trained by a genetic algorithm and steep-

est gradient descent running in an embedded RISC proces-

sor. The population of solutions does not have material exis-

tence: only one physical net is implemented by the network

of DSPs, with each individual being downloaded for evalua-

tion. From our point of view, the proposed solution presents

two main drawbacks. First, even if a genetic algorithm is

used, the type of learning is essentially supervised, needing

a training sequence to be transmitted from the source. Sec-

ond, the solution is rather expensive, since a single neuron

is implemented in a dedicated DSP.

Nowadays, commercially available FPGAs benefit from

large amounts of configurable resources, allowing the im-

plementation of very complex circuits. In our approach, we

will consider the FPGA implementation of a whole pop-

ulation of very simple neural networks (e.g, BRBF nets),

along with an embedded soft-processor responsible for run-

ning the adaptation mechanism (e.g, the proposed PSODR)

and the reconfiguration of the population of nets. The setup

of the complete system will consist of a self-reconfigurable

platform as the one described in [16].

Based on hardware synthesis reports, a single 15-neuron

BRBF-network with 8-bit data resolution, implemented in

a Virtex-II 2v4000 FPGA from Xilinx, requires 2% of the

FPGA’s logic resources. Therefore, it is reasonable to imag-

ine a self-reconfigurable platform with a MicroBlaze soft-

processor reconfiguring a population of until 30 BRBF net-

works embedded in a single Virtex-II 2v4000 FPGA.

We plan to use this platform for the solution of adaptive

channel equalization. In order to do this without the need

of a training sequence, the BER of each neural network-

based equalizer will be estimated by means of an error de-

tection code. Using these measures, the PSODR will adapt

the different parameters of the nets in the population, find-

ing incrementally a good solution in the search space, and

decreasing the BER of the whole system. The best solution

found so far will be always physically present, giving the

actual output of the equalizer (Fig. 7).

BRBF BRBF BRBF BRBF

BER BER BER BER

z−1 z−1

M particles gbest

PSODR

r(t)

ŝ(t)

r(t − 1) r(t − n + 1)

Figure 7. The Proposed Equalizer

In this paper we focus on a simulation of the system for

the stationary channel case, leaving both the non-stationary

case and the actual hardware implementation for the future

work.

For the sake of comparison, we used the communica-

tion system proposed in [12]. The source transmits a ran-

domly generated sequence of bipolar symbols (−1 and +1)

through a linear channel with additive, zero-mean Gaus-

sian noise. The transfer function of the channel is H(z) =
1 + 1.5z−1. The order of the equalizer (number of delay

elements at the input of the equalizer) was thus set to n = 2
(see Fig. 7).

Using this setup, populations of 10, 20 and 30 BRBF nets

with J = 15 neurons each were evolved using the gbest
version of PSODR with w = 0.5 and ϕ1 = ϕ2 = 1. The

PSODR algorithm was responsible for adapting not only the

output weights wj of the net, but also the centers cj and the

widths σj of the neurons: a 2J + nJ = 60-dimensional

search space.

A generation comprises the reception of 104 symbols by

every BRBF net. For the sake of simplicity, we assumed an

ideal BER estimator, that estimates the BER of each particle

as the ratio of misclassified to total number of symbols in

the output of the decision device. The decision device uses

the threshold function:

ŝ(t) =

{
−1 if y(t) < 0
1 otherwise

(17)

The learning performance of this simulation for a signal-

to-noise-ratio (SNR) of 15dB is shown in the Fig. 8. For

each population size, each curve shows the measured BER

of the gbest solution for each generation, averaged over 100

independent runs. As it can be seen, the BER is improved

over the generations showing a satisfactory learning pro-

cess. When compared with the results given in [12] for this

experiment, the final averaged BER obtained by our solu-

tion is much lower than both the one provided by a tradi-

tional linear transversal filter and by the GRD system. For
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Figure 8. Learning performance of the pro-
posed equalizer for a SNR of 15 dB

the population size of 10, the improvement is of 5 times,

whereas for 20 and 30 particles the improvement is of about

2 orders of magnitude. This is a significant result, spe-

cially when comparing the population sizes (80 in the ref-

erenced work) and the computational complexity of the two

approaches.

6 Conclusions and Future Work

We have presented PSODR, a simple, efficient model for

stochastic optimization, that takes the concept of recombi-

nation from the evolutionary computation field and incorpo-

rates it into the general framework of particle swarm opti-

mizers. When tested in benchmark optimization problems,

the gbest and lbest PSODR variants show a better perfor-

mance than the standard PSO algorithms. Most importantly,

this improvement is not achieved by computationally com-
plicating the algorithm, but by making it simpler.

The proposed adaptive platform, in which a population

of simple neural nets with material existence are evaluated

and reconfigured by means of a coprocessor running the

proposed optimization algorithm, seems to be well suited

to cope with the problem of channel equalization in a com-

munication system, at least for the stationary case. The non

stationary case must be investigated, and modifications to

PSODR to make it suitable for dynamic optimization have

to be explored. More important, the hardware implementa-

tion of the proposed solution is to be realized in a commer-

cially available FPGA.

Regarding the optimization algorithm itself, it has to be

more deeply tested in other theoretical benchmark functions

as well as in more practical problems.
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