
A Population-oriented Architecture for Particle Swarms

Jorge Peña

Université de Lausanne - UNIL

Institut de Mathématiques Appliquées - IMA

Lausanne, Switzerland

jorge.pena@unil.ch

Andres Upegui

Haute Ecole d’Ingénierie et Gestion du Canton Vaud - HEIG-VD

Reconfigurable and Embedded Digital Systems - REDS

Yverdon, Switzerland

andres.upegui@heig-vd.ch

Abstract

Self-adaptive autonomous hardware systems require

on-chip heuristics to generate the circuit that consti-

tutes the desired solution. In this paper, we present

a population-oriented hardware architecture for particle

swarm optimization with discrete recombination (PSO-DR),

a hardware-friendly particle swarm that has shown to per-

form better than the standard PSO for certain parameter

values and test functions. We present simulation and syn-

thesis results showing the feasibility, performance, and ad-

vantages of the proposed architecture.

1 Introduction

Evolvable Hardware (EHW) allows four qualitative sub-

divisions according to its level of bio-inspiration: extrinsic,

intrinsic, complete, and open-ended evolution [11]. Extrin-

sic evolution corresponds to evolutionary circuit design, as

both fitness calculation and genetic operations are executed

in software, and the resulting solution is implemented in

hardware. In intrinsic evolution, a real circuit is used dur-

ing the evolutionary process for fitness computation, even

though most genetic operations are still executed in soft-

ware. In complete evolution, there are systems in which all

fitness evaluations, as well as genetic operations, are exe-

cuted on hardware. Finally, open-ended evolution does not

admit an externally imposed fitness criterion, but rather an

implicit, emergent and dynamic one.

There are two distinct approaches to complete evolution:

the centralized and the population-oriented. The central-

ized approach implies the use of a “genetic machine” im-

plemented on the same evolving hardware substrate. An

instance of this approach is Haddow and Tufte’s pipelined

hardwired genetic machine [14], where a single individual

is multiplexed in time. Contrastingly, the distinctive feature

of the population-oriented approach is the parallel imple-

mentation of the full population. This approach is used by

Goeke et al. [3] in their implementation of a cellular au-

tomata, based on Sipper’s cellular programming evolution-

ary algorithm [10], whose evolution takes place completely

on-chip. In this algorithm, genetic operators are computed

in a distributed way, as each automaton modifies its updat-

ing rule based on its own fitness and on that of its neighbors.

However, cellular programming is not well suited for opti-

mization problems. The algorithm is intended to find quasi-

uniform cellular automata and thus converges to a popula-

tion almost entirely composed of few distinct individuals.

EHW relies on the use of heuristic, stochastic,

population-based optimization methods. The most com-

mon type of such methods is evolutionary algorithms (EA),

while particle swarms [4] constitute the second major

group. Particle swarms are starting to be used for EHW,

specially in the context of extrinsic evolution [2, 6]. Intrin-

sic evolution of analog reconfigurable devices using particle

swarms has also been proposed [12].

To the best of our knowledge, particle swarm optimiza-

tion (PSO) has not yet been used to perform complete evo-

lution of digital hardware systems. However, population-

oriented hardware implementations of particle swarms have

been proposed for solving different optimization problems,

such as the inversion of large neural networks [9] and the

dynamic adaptation of array antennas [5]. Particle swarms

lend themselves well to population-oriented implementa-

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

tions, since their population sizes are often small (around

20 particles). This contrasts with typical GA population

sizes, which could be one order of magnitude larger. Yet,

the requirement of both multiplications and random num-

bers in the update formulas could be serious obstacles to

the population-oriented approach. In [9], a solution to this

problem is proposed by completely eliminating stochastic-

ity in the update rules and restricting the values of the pa-

rameters to powers of two, so that multiplications could be

realized by simple shift operations. Though this simplifi-

cation worked well for the cited application, deterministic

particle swarms performed worse than their stochastic coun-

terparts. Thus, the solution could not be succesfully applied

to other problems.

In this paper we present a population-oriented hardware

implementation of the particle swarm optimization with dis-

crete recombination algorithm (PSO-DR) [8]. Additionally,

we validate the hardware usability of PSO-DR, proposing

an optimized pipelined architecture that exploits the speed-

up provided by the inherent parallelism of the hardware im-

plementation, while still finding competitive solutions com-

pared to software simulations.

The paper is organized as follows. Section 2 briefly in-

troduces both particle swarm optimization and PSO-DR. A

description of the proposed population-oriented hardware

architecture is given in section 3; while simulation and syn-

thesis results of its implementation are presented in sec-

tion 4. Finally, section 5 concludes the paper and suggests

some future work.

2 PSO-DR: Particle Swarm Optimization

with Discrete Recombination

Particle Swarm Optimization (PSO) is a stochastic,

population-based optimization method first introduced by

Kennedy and Eberhart [4]. A particle swarm is defined

as a group of M entities or particles, connected accord-

ing to a given neighborhood topology, that explore an n-

dimensional search space looking for the optimum of a

function f . The search is performed iteratively, so that par-

ticles’ states are updated from time step t to time step t + 1
by the recursive application of a set of update rules. The

state of the i-th particle at time step t is given by three vec-

tors in the search space: its position (xi,t), its velocity (vi,t),

and its personal best (pi,t).

The i-th particle of a canonical particle swarm with in-

ertia weight modify its state according to:

pi,t+1 = arg min
{

f
(

pi,t

)

, f (xi,t)
}

(1)

vi,t+1 = w · vi,t + U [0, ϕ1] ⊗
(

pi,t+1 − xi,t

)

+U [0, ϕ2] ⊗
(

pb(i),t+1 − xi,t

)

(2)

xi,t+1 = xi,t + Γ (vi,t+1) , (3)

where (a) Γ(·) is a component-wise clamping function

that binds the velocity components within a given range,

(b) w ∈ [0, 1] is the inertia weight, (c) U [lower, upper]
is a vector of uniformly distributed random values between

lower and upper, (d) ϕ1 and ϕ2 are acceleration constants,

(e) ⊗ is a point-wise vector multiplication operator, and

(f) pb(i) is the neighborhood best: the best personal best

in the neighborhood of particle i.

Historically, two neighborhood topologies have been

used the most extensively: Ring (or lbest) and All (or

gbest). In Ring, particles are arranged as a one-dimensional

cellular automata, each individual being connected to its im-

mediate neighbors. In All, the topology is a fully connected

one, the neighborhood of each particle being in this case the

whole swarm. If an All topology is being used, the neigh-

borhood best is the same for all the particles. It is called

global best and represented by pg .

The canonical particle swarm with inertia weight pre-

sented in the previous lines is relatively well suited for

population-oriented hardware implementations. Commu-

nication between particles is required only to calculate the

neighborhood best. Apart from this issue, the state of each

particle can be updated independently from each other. The

velocity update rule (Eq. 2), however, still requires 2 ran-

dom number generations and 3 multiplications per particle,

per dimension. Hardware implementation of such opera-

tions is problematic since it could imply high silicon costs.

In order to tackle this problem, we proposed particle swarm

optimization with discrete recombination (PSO-DR) [8].

PSO-DR considers a swarm of particles arranged accord-

ing to a Ring topology. A recombinant ri is then defined for

each particle i by performing a discrete recombination be-

tween the personal bests of its left and right neighbors. This

recombinant is then used in lieu of the personal best or the

neighborhood best in a deterministic velocity update rule.

The gbest version of PSO-DR uses it in a velocity update

rule of the form:

vi,t+1 = w · vi,t + ϕ1 · (ri,t+1 − xi,t)

+ϕ2 ·
(

pg,t+1 − xi,t

)

. (4)

With the choices ϕ1 = ϕ2 = 1 and w = 0.5, that have

shown good performance in different test functions [8], the

algorithm involves no multiplications1. In addition to this,

the random number generation requirements are minimal:

only one bit per particle, per dimension, instead of two full

1Multiplication by 0.5 can be replaced by a trivial shift operation in

fixed point representations.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

Figure 1. Proposed population-oriented architecture for PSO-DR. PD stands for particle datapath, FC

for fitness computation, and GBS for global best selection

words, is required2. These two characteristics are ideal for

having PSO-DR directly implemented in hardware, even

following a population-oriented approach. For a better de-

scription of PSO-DR, see [8].

3 PSO-DR Architecture

A simplified block diagram of the whole system is shown

in Fig. 1. It is comprised of M particle datapath blocks, in-

terconnected according to a Ring topology, so that each par-

ticle datapath has access to the personal bests of its left and

right neighbors (pleft and pright in the figure). Each particle

datapath block implements a particle, stores the particle’s

state in memory and performs the required computation for

updating it. Each particle datapath is associated with a fit-

ness computation block, so that the whole population could

be evaluated in parallel. In the case of a complete EHW ap-

plication this fitness computation block would consist in the

target digital circuit being evolved. Having a particle datap-

ath and a fitness computation block for each particle assures

the full population-oriented approach of the architecture: all

the particles in the swarm are both evaluated and updated in

parallel. Notice that the growth in area of this modular ar-

chitecture is approximately linear versus the population size

of the swarm.

2This random bit is needed to determine the recombinant target.

In addition to the particle datapath blocks, three global

blocks are necessary for the circuit to work properly:

(1) a random number generation and distribution (RNGD)

block, that generates and distributes random bits to the array

of particle datapaths, (2) a global best selection block, that

receives the personal bests of the particle datapaths (and

their fitness values), and computes the global best, broad-

casting it to the particle datapaths, and (3) a control block

for the synchronization of the whole operation.

3.1 Particle Datapath

A schematic of the particle datapath block is shown

in Fig. 2. It consists of: (1) two dual-port RAMs with

synchronous read (read through) for storing the multi-

dimensional values corresponding to the position and the

velocity of the particle (X-RAM and V-RAM), (2) a single-

port RAM for storing the personal best of the particle (P-

RAM), (3) a personal best update (P-update) block for con-

trolling the updating of the particle best (Eq. 1), (4) a veloc-

ity and position update (VX-update) block for calculating

the new velocity and position of the particle (Eq. 2 and 3),

and (5) additional glue logic and registers.

In order to explain the operation of a particle datapath

block, let us assume that the RAM blocks have already been

properly initialized. Each line of RAM stores a single com-

ponent or dimension of the respective vectors. First, fitness

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

Figure 2. Particle datapath block. The clk

and rst signals to the internal blocks are not

drawn for the sake of clarity

of each particle is evaluated. The evaluation of the fitness

of each particle is done by the fitness computation block,

having access to the contents of the X-RAM memory. After

fitness evaluation, the fitness of the current position (fx) is

available for the P-update block. This block, which stores

the fitness value of the personal best (fp), compares both

fitness values. If fx is lower than fp, the personal best p

is replaced by x. Otherwise the old personal best is kept.

After this, the global best selection mechanism is activated:

the global best selection block, that receives the fitness val-

ues of personal bests of all particles, calculates the global

best (pg).

Finally, the VX-update block computes the new veloc-

ity and the new position of the particle, according to Eq. 2

and Eq. 3. The VX-update block is shown in Fig. 3. It

is a pipelined datapath consisting of one multiplexer (for

performing the discrete recombination process), two sub-

tractors, three adders and two saturation blocks (one for the

velocity and one the position). This pipelined architecture

allows an efficient computation of the updated variables, by

allowing the full computation, in a single clock cycle, of

each dimension’s update for both the velocity and the posi-

tion of the particles.

3.2 Fitness Computation

The fitness computation block implements the function

to be optimized by the PSODR algorithm. Several types of

implementations are allowed for such block, depending on

the target application of the optimization platform. In the

specific case of evolvable digital hardware, this fitness com-

putation block would consist of a set of functional blocks

with some degree of reconfigurability at function specifica-

Figure 3. Update block. Gray bars represent

registers between pipeline stages

tion or interconnectionism (or both). The functionality of

these functional blocks can range from basic 2-inputs logic

gates to more complicated functions such as arithmetic op-

erators, neurons, or filters. What is really important is the

possibility of this set of functional blocks to be reconfigured

by means of a bit chain, in order to allow the evolutionary

algorithm to find the final configuration.

One can identify two main implementations of this con-

figurability when evolving circuits: real and virtual config-

uration. The main difference between them is the fact that

in real configuration what is being evolved is the actual con-

figuration bitstream of the reconfigurable device supporting

the circuit, while in virtual configuration the configurable

platform is a virtual configurable substrate implemented on

top of the real one. Whether the reconfiguration is real or

virtual depends on the technological constraints imposed

by the reconfigurable device at hand and, in principle, it is

transparent for the optimization algorithm execution. The

fact of using real or virtual reconfiguration may only affect

the system performance in two ways: by allowing a faster or

slower evaluation of the individual, and by allowing a more

compact implementation of the fitness computation support-

ing thus a higher number of particles.

In the specific case of this paper, we focus on the

methodological issues that concern the hardware implemen-

tation of the optimization machine, and we do not focus on

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

Figure 4. States and state transitions of the FSM of the control block

evolving a given digital circuit. Because of this, we used

two mathematical test functions (described in section 4) as

testbench for comparing the performance of our hardware-

oriented algorithm implementation to software algorithms.

3.3 Random Number Generator and Dis-
tributor (RNGD)

The function of the RNGD module is to generate and dis-

tribute random numbers to the particle datapath blocks. It

is comprised of a 16-bit LFSR expanded with a shift register

with parallel output. Two random words (xr and vr in Fig. 1)

are drawn in parallel from this stream and used for initializa-

tion of positions and velocities. During updating according

to the PSO-DR updating rules, the only required random bit

per particle and dimension (RAND in Fig. 2 and 3) is taken

from the rightmost bit of the first of the two random words.

3.4 Global Best Selection

The global best selection block is a multiplexer-based

switch block, that connects the pg input of each particle dat-

apath block in the population with the output of the RAM

(be it X-RAM or P-RAM) where the current global best

is currently stored. The block is comprised of a set of

pipelined minimum blocks arranged in a tournament-like

manner, so that only the minimum values of a given stage

are allowed to propagate. Comparison signals are collected

and properly propagated so that at the end the index of the

particle having the global best is found. Thanks to its ar-

chitecture, the global selection block is able to calculate the

index of the global best in just ⌊log2 M⌋ clock cycles.

3.5 Control block

The control block is comprised of a finite state machine

(FSM) augmented with a counter and decision logic for

deciding state transitions, plus counters for generating ad-

dresses for the RAMs in the particle datapath blocks. A

scheme of the states and the state transitions of the control

block is shown in Fig. 4.

After an initialization phase (states RST, LFSR, RNGD

and INIT), where particles’ velocities and positions are ran-

domly initialized, the fitness of the initial population is com-

puted in the EVAL state. Then, during the P-UP and GSEL

states, the P-update block and the global best selection

block compute respectively the personal best and the global

best values. Finally, velocities and positions are to be up-

dated and their new values written in memory. Three states

(UP-1, UP-2, and UP-3) are used for this. The first state

fills the pipeline of the update block. When the pipeline is

full it passes to state UP-2, and during UP-3 the pipeline

flushes. In our specific implementation the pipeline is com-

posed of 6 stages, but the same approach can be used for a

larger number of stages.

After the UP-3 state, the system comes back to the EVAL

state and all the process is repeated again from this point for

performing a new iteration. The computation of a single it-

eration, consisting in the update of the state of all particles

in the swarm can be achieved in log2M + N + 7 clock cy-

cles.

4 System Setup and Results

The population-oriented hardware architecture presented

in the previous section was described in VHDL for sim-

ulation and synthesis on an FPGA. The dimensionality of

the search space (that defines the number of words of the

position, velocity and personal best RAMs) as well as the

number of bits in a data word (DataWidth) and the number

of bits used to represent the fitness values (FitnessWidth),

were left as parameters in the VHDL description. Param-

eters DataWidth and FitnessWidth determine the word size

of the RAMs and of the registers in the architecture.

In a previous work [8], we used four benchmark math-

ematical functions (Sphere, Rosenbrock, Rastrigin and

Griewank) to test the optimization capabilities of the PSO-

DR algorithm. PSO-DR was found to be superior than

a standard particle swarm algorithm, considering different

population sizes and dimensionalities of the test functions.

Table 1. Number of bits m at the left and b at

the right of the decimal point
Function M d xmin xmax

Sphere 8 24 -128 127.99609375

Rastrigin 5 27 -16 15.99951171875

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−2

10
0

10
2

10
4

10
6

Iteration

B
e
s
t
F

it
n
e
s
s

Figure 5. Learning performance according to

the ModelSim simulation for the Sphere func-

tion. The , black curve represent the fitness

of the global best averaged over 50 runs,

while the gray narrow curves represent the

fitness of the best solution for each single

run

The suitability of the algorithm being already shown, our

interest was to verify the proper working of the designed

architecture. In order to perform this verification, VHDL

fixed-point models of two of the functions of the original

benchmark (Sphere and Rastrigin) were coded with a di-

mensionality of n = 32, and values of DataWidth = 16
and FitnessWidth = 32 were used. The number of bits

m at the left and d at the right of the decimal point used

for the data words, and the resulting minimum and maxi-

mum values (xmin, xmax) of the search space of the two

functions functions are referred in Table 1. A mathemati-

cal description of the Sphere and Rastrigin functions can be

found in [8].

4.1 Simulation Results

For each function, 50 different runs were simulated, each

one using a different 16-bit random seed for filling the

LFSR during the LFSR state. The location of the minimum

was kept fixed over time. A population size of M = 16 was

used for both functions.

Fig. 5 and Fig. 6 show the learning performance for the

two functions obtained directly from the ModelSim simula-

tions. It can be observed how the system is able to optimize

the functions. The first half of Fig. 5 show the characteris-

tic straight line of a particle swarm minimizing the Sphere

function, when the y-axis is in logarithmic scale. After the

first 450 learning steps, there is no more progress in the

minimization of the function, due to the finite precision of

the fixed point representation.

In order to better assure the proper working of the de-

signed hardware architecture, a fixed-point model of PSO-

0 100 200 300 400 500 600 700 800 900 1000
10

1

10
2

10
3

10
4

Iteration

B
e
s
t
F

it
n
e
s
s

Figure 6. Learning performance according to

the ModelSim simulation for the Rastrigin

function. The same of conventions of Fig. 5

apply here.

DR was coded in Matlab and run over the Sphere and Ras-

trigin functions. Fig. 7 and Fig. 8 show the comparison be-

tween the results obtained from the Matlab and the Model-

Sim simulations. Symmetric initialization of the positions

and velocities of the particles was used for the Matlab mod-

els. Notice that the curves describing Matlab and ModelSim

results are very similar. This leads to the conclusion of the

good operation of the designed hardware. The little differ-

ences are due to the stochastic nature of the algorithms and

the different used methods for obtaining random numbers

in both models (extracting bit words in parallel from a shift

register connected in series to a 16-bit LFSR for the Model-

Sim case, and using the rand() function in the Matlab case).

0 100 200 300 400 500 600 700 800 900 1000
10

−5

10
0

10
5

Iterations

B
e
s
t
F

it
n
e
s
s

Figure 7. Learning performance according to

the ModelSim (solid line) and fixed point Mat-

lab (dotted line) simulations for the Sphere

function

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

0 100 200 300 400 500 600 700 800 900 1000

10
2

10
3

Iterations

B
e
s
t
F

it
n
e
s
s

Figure 8. Learning performance according to

the ModelSim (solid line) and fixed point Mat-

lab (dotted line) simulations for the Rastrigin

function

4.2 Synthesis Results

The proposed PSO-DR population-oriented architecture

was synthesized on a commercial FPGA in order to deter-

mine the suitability of a real hardware implementation. We

used a Virtex-4 XC4VLX25 from Xilinx, which has a max-

imum capacity of implementing 24192 logic gates. This

FPGA has 96 × 28 configurable logic blocks (CLBs), with

4 slices each CLB, for a total number of 10752 slices. In ad-

dition to that, it has 72 18-Kb block RAMs, a maximum of

168 Kb distributed RAM and 48 XtremeDSP Slices (each

one containing one 18 × 18 multiplier, an adder, and an ac-

cumulator).

The device utilization summary (results of the synthesis

process in terms of slices, slice flip flops, look up tables and

RAM blocks utilization) are shown in Table 2. Synthesis

was done using the XST synthesis tool from Xilinx. The

XC4VLX25 is not the largest device from the Virtex-4 LX

FPGA family. The XC4VLX200, for instance, offers more

than 8 times more logic resources and more than 4 times

more RAM blocks. It can be seen, however, that more or

less the 70% of the logic resources, as well as the 44% of

the memory resources of the FPGA and the totality of the

XtremeDSP slices are still free to be used in whatever hard-

ware needs to be optimized.

According to synthesis reports, a clock of a minimum pe-

riod of 6.214 ns (a maximum frequency of 160.919 MHz)

can be expected for the design. With a population of M =
16 particles and a search space of dimensionality n = 32;

the updating of the state of the whole swarm would take

only log2M +N +7 = 43 clock cycles, equivalent to 267.2

ns. The updating of the same swarm over a problem of the

same dimensionality running in Matlab on a Intel Pentium

M running at 1.6 GHz with 1GB of RAM, takes around 2.3

µs. This is equivalent to an approximate speedup of 8600

Table 2. Device Utilization Summary (esti-

mated values)

Logic Utilization Used Available Utilization

Slices 3454 10752 32%

Slice Flip Flops 4951 21504 23 %

4-input LUTs 5757 21504 26%

FIFO16/RAMB16s 48 72 66%

times of the hardware over the software implementation.

Obviously, more efficient software implementations could

be achieved, e.g., in C or assembler code, and these num-

bers are only valid as a very rough approximation to the

expected speedup of the proposed hardware over a software

solution.

5 Conclusions and Future Work

This article has presented a population-oriented hard-

ware implementation of a particle swarm optimizer. It

features a RAM-based genotype-phenotype mapping, dis-

tributed and parallel processing capabilities, distributed

storage, pipelined datapaths and fixed-point arithmetic. In

addition to this, it is based on the hardware-friendly PSO-

DR algorithm, and thus multipliers are needed.

The architecture was described in VHDL and success-

fully validated with two well established benchmark func-

tions (Sphere and Rastrigin). The correct functionality of

the proposed hardware was thus verified. Furthermore,

the design is already synthesizable on an FPGA. It was

shown that, when using a Xilinx Virtex-4, there are still

enough resources for the adaptive circuit to be optimized,

meaning that effective particle swarm-based, population-

oriented, complete evolvable hardware is possible.

The current architecture supports static optimization

problems only. Obviously, the importance of complete evo-

lution EHW is its ability to achieve truly adaptive hardware,

i.e., a dynamic optimization problem. Future work must

thus target the inclusion of a mechanism for dynamic op-

timization in the proposed architecture. Extensions for dy-

namic optimization such as the use of resetting [1], or for-

getting and velocity resetting [7] could be easily introduced,

implying only minor changes and no important increase in

the complexity of the design. A detection mechanism would

also be necessary to track important changes in the environ-

ment so that the response method (resetting or forgetting

and velocity resetting of particles) is triggered. Optionally,

the response mechanism could be triggered on a periodic

basis.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

Another interesting feature to be included is the adapt-

ability of the swarm size. The number of particles could

be automatically and dynamically adapted according to the

task’s requirements. Thus, a big population could be used

when facing difficult requirements, while a small popula-

tion could be used otherwise. This would allow a more

efficient utilization of the silicon resources by reusing the

hardware substrate. This feature requires special self-

reconfiguration mechanisms allowing a particle to self-

replicate. Such mechanisms are not present in commercial

FPGAs, but they are being currently targeted in custom bio-

inspired devices such as the ubichip [15, 13].

References

[1] A. Carlisle and G. Dozier. Adapting particle swarm opti-

mization to dynamic environments. In International Con-

ference on Artificial Intelligence, volume I, pages 429–434,

2000, Las Vegas, NV.

[2] C. A. C. Coello, E. H. Luna, and A. H. Aguirre. Use of

particle swarm optimization to design combinational logic

circuits. In ICES, pages 398–409, 2003.

[3] M. Goeke, M. Sipper, D. Mange, A. Stauffer, E. Sanchez,

and M. Tomassini. Online autonomous evolware. In Evolv-

able Systems: From Biology to Hardware, LNCS, volume

1259, pages 96–106. Springer-Verlag, 1997.

[4] J. Kennedy, R. Eberhart, and Y. Shi. Swarm intelligence.

Morgan Kaufmann, 2001.

[5] G. Kokai, T. Christ, and H. H. Fruhauf. Using hardware-

based particle swarm method for dynamic optimization of

adaptive array antennas. In Proc. First NASA/ESA Con-

ference on Adaptive Hardware and Systems, pages 51–58,

2006.

[6] P. Moore and G. K. Venayagamoorthy. Evolving combina-

tional logic circuits using a hybrid quantum evolution and

particle swarm inspired algorithm. In Evolvable Hardware,

pages 97–102, 2005.

[7] J. Peña. On-line, on-chip particle swarm optimization for

adaptive hardware. Master’s thesis, Advanced Learning and

Research Institute, ALaRI. University of Lugano, 2006.

[8] J. Peña, A. Upegui, and E. Sanchez. Particle swarm opti-

mization with discrete recombination: An online optimizer

for evolvable hardware. In Proc. First NASA/ESA Confer-

ence on Adaptive Hardware and Systems, pages 163–170,

2006.

[9] R. Reynolds, R. Duren, M. Trumbo, and R. Marks. FPGA

implementation of particle swarm optimization for inversion

of large neural networks. In Swarm Intelligence Symposium,

2005. SIS 2005. Proceedings 2005 IEEE (2005), pages 389–

392.

[10] M. Sipper. Evolution of parallel cellular machines the cel-

lular programming approach. Springer, Berlin, 1997.

[11] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Perez-

Uribe, and A. Stauffer. A phylogenetic, ontogenetic, and

epigenetic view of bio-inspired hardware systems. IEEE

Transactions on Evolutionary Computation, 1(1):83–97,

1997.

[12] P. Tawdross, S. K. Lakshmanan, and A. Konig. Intrin-

sic evolution of predictable behavior evolvable hardware

in dynamic environment. In HIS ’06: Proceedings of the

Sixth International Conference on Hybrid Intelligent Sys-

tems, page 60, 2006.

[13] Y. Thoma, A. Upegui, A. Perez-Uribe, and E. Sanchez. Self-

replication mechanism by means of self-reconfiguration. In

Workshop Procedings of the International Conference on

Architecture of Computing Systems 2007 (ARCS’07). VDE

Verlag, Berlin, 2007.

[14] G. Tufte and P. Haddow. Prototyping a GA pipeline for com-

plete hardware evolution. pages 18–25, 1999.

[15] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe,

J. Moreno, and J. Madrenas. The Perplexus bio-inspired re-

configurable circuit. In Proceedings of the 2nd NASA/ESA

Conference on Adaptive Hardware and Systems, 2007.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

