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We study the effects of conformity, the tendency of humans to imitate locally common behaviors, in the
evolution of cooperation when individuals occupy the vertices of a graph and engage in the one-shot prisoner’s
dilemma or the snowdrift game with their neighbors. Two different graphs are studied: rings �one-dimensional
lattices with cyclic boundary conditions� and scale-free networks of the Barabási-Albert type. The proposed
evolutionary-graph model is studied both by means of Monte Carlo simulations and an extended pair-
approximation technique. We find improved levels of cooperation when evolution is carried on rings and
individuals imitate according to both the traditional payoff bias and a conformist bias. More importantly, we
show that scale-free networks are no longer powerful amplifiers of cooperation when fair amounts of confor-
mity are introduced in the imitation rules of the players. Such weakening of the cooperation-promoting abilities
of scale-free networks is the result of a less biased flow of information in scale-free topologies, making hubs
more susceptible of being influenced by less-connected neighbors.
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I. INTRODUCTION

Understanding the emergence and stability of cooperation
is a central problem in many fields of both natural and social
sciences. Researchers have traditionally adopted evolution-
ary game theory �1� as common formal framework for study-
ing the dynamics of strategy change and games such as the
prisoner’s dilemma �PD� and the snowdrift game �SG� as
metaphors for the tension between group welfare and indi-
vidual selfishness. The PD and the SG �also known as
chicken or hawks–doves� are two-person symmetric games
in which a given player can be, at each time step, either a
cooperator �C� or a defector �D�. Cs are willing to engage in
cooperative tasks, while Ds prefer not to, thus exploiting Cs.
If two individuals of the same type interact, they both get the
reward for mutual cooperation R if they cooperate or the
punishment for mutual defection P if they defect. If a D and
a C interact, the D receives the temptation to defect T and the
C receives the sucker’s payoff S. In the PD, the payoffs are
ordered such that T�R� P�S with 2R�T+S. Since T
�R and P�S, the only Nash equilibrium of the game is the
pure strategy �D,D�. In this case, the dilemma is caused both
by “greed” �or the temptation to cheat� and “fear” that the
other player cheats. In the SG, the order of P and S is re-
versed, yielding T�R�S� P. Thus, when both players de-
fect they get the lowest possible payoff. The pairs of pure
strategies �C,D� and �D,C� are Nash equilibria of the game.
There is also a third equilibrium in mixed strategies in which
strategy D is played with probability p and strategy C with
probability 1− p, where p depends on the actual payoff val-

ues. The dilemma in this game is caused only by greed, i.e.,
players have a strong incentive to threat their opponent by
playing D, which is harmful for both parties if the outcome
happens to be �D,D�.

Conventional evolutionary game theoretical models as-
sume an infinite population in which pairs of randomly
drawn individuals interact according to a given game. Selec-
tion is strictly payoff biased, which implies that fitter indi-
viduals reproduce more �genetic evolution� or successful in-
dividuals tend to be imitated more frequently �cultural
evolution�. In both genetic and cultural evolutions, the evo-
lutionary process can be analytically described by a set of
equations called the replicator dynamics �1�. In the SG, the
only stable equilibrium of such equations is an internal one,
corresponding to the mixed strategy of classical game theory,
while the two pure equilibria are unstable. In the PD, the
only stable rest point occurs when the population is entirely
composed of Ds: Cs are doomed to extinction in this game.

Given these unfavorable predictions for the evolution of
cooperation, several mechanisms have been invoked in order
to explain why altruism can actually emerge, such as kin
selection, group selection, direct reciprocity, indirect reci-
procity, and network reciprocity �2�. Network reciprocity
�3–6� arises when individuals occupy the vertices of a graph
�modeling spatially subdivided populations or social net-
works� such that interactions are constrained to direct neigh-
bors. When the population of players possesses such a struc-
ture, Cs can survive in clusters of related individuals for
certain ranges of the game parameters, as it has been known
since the pioneering work by Nowak and May �3�. Among
the different conceivable population topologies, scale-free
networks have received particular attention since they have
been found to promote cooperation to a point that Cs domi-
nate Ds in a significant portion of the parameters’ space �4�.

In addition to positing infinite well-mixed populations, the
replicator dynamics relies on the assumption that selection is
entirely payoff biased. Such a premise, although natural to
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posit in genetic evolution, is less straightforward to postulate
in cultural evolution where information is transmitted by
means of imitation. Humans not only have a bias for imitat-
ing more successful people but also are prone to conform or
to show a disproportionate tendency to copy the behavior of
the majority �7�. Recent empirical research has shown that
conformity is an important bias in our social learning psy-
chology �8,9� and that it can partially account for the results
obtained in laboratory experiments on social dilemmas
�10,11�. Theoretical research has also shown that conformity
can promote cooperation in the PD. In the standard case of a
large well-mixed population, the dynamics can lead either to
full defection or to bistability, depending on the amount of
conformity �12–14�. In �13� the case of square lattices was
studied by simulation, with the result that conformity stabi-
lizes cooperation in such population topologies, a result con-
firmed for rings in �15� and, in a more detailed way, in the
work presented here.

In this paper we investigate the evolution of cooperation
when individuals imitate with a given amount of conformity
and both interaction and imitation are constrained to nearest
neighbors in a network. In order to extend previous work
�3,4,13,16–18� and to study the influence of the network to-
pology, we use rings and Barabási-Albert scale-free networks
as examples of simple degree-homogeneous �i.e., regular�
and highly degree-heterogeneous graphs, respectively. It will
be shown that, while conformity reinforces the cooperation-
promoting advantages of network reciprocity in rings, the
very same mechanism may strongly hinder the evolution of
cooperation when the network topology is scale-free. Indeed,
when Cs are not initially in the majority and imitation is
partly conformist, scale-free networks are no longer the pow-
erful amplifiers of cooperation expected from the results of
previous studies. There is thus an interesting interplay be-
tween conformity and network reciprocity so that the
cooperation-promoting effects of conformity depend on the
particular type of networks on which evolutionary dynamics
are played.

II. MODEL

We consider a population of size N where the ith indi-
vidual is represented by the vertex vi of an undirected simple
graph G�V ,E�. The neighborhood of i, ��i�, is the set of all
individuals j such that there is an edge eij �E. The number
of neighbors of i is thus the degree ki of vertex vi.

At each time step, each individual is either a C or a D.
The system evolves by the successive application of interac-
tion and imitation phases. During the interaction phase, indi-
viduals simultaneously engage in a single round of the game
with their neighbors. As a result, individual i collects an
accumulated payoff �i=�l���i��il, where �il is the payoff
player i receives when interacting with player l �e.g., T, R, P,
or S�. During the imitation phase, each individual randomly
chooses one of its neighbors as its cultural model. Let us
denote by j the cultural model of player i . We consider two
update rules for the cultural evolutionary dynamics: payoff
biased imitation and conformist imitation. �i� For payoff bi-
ased imitation, i copies j’s strategy with a probability given

by f(�� j −�i� / ��k��), where f�x� is equal to x if x�0 and 0
otherwise, k�=max�ki ,kj�, �=T−S in the PD, and �=T− P
in the SG. This update rule is a local finite population analog
of the replicator dynamics, commonly used in the literature
�4,16�. �ii� For conformist imitation the probability that i
copies j’s strategy is given by f(�nj�i−ni�i� /ki), where nl�i is
the number of i’s neighbors with the same strategy as l. This
update rule is related to the majority rule and to the voter
model, commonly used in interdisciplinary physics studies
�19�. In our model individuals imitate according to a payoff
bias with probability 1−� and according to a conformist bias
with probability �. Thus, the parameter � represents the
amount of conformity in the individuals’ behavior and gives
the average proportion of players imitating according to the
conformity rule at each time step. When �=0 our local dy-
namics reduce to the strictly payoff biased imitation rule
used in previous studies �4,16�. Figure 1 gives some illustra-
tive examples of the imitation dynamics of the proposed
model.

In order to allow comparison with previous studies, we
focus on the commonly used rescaled version of the PD
�3,4�, for which T=b, 1�b�2, R=1, and P=S=0. The pa-
rameter b represents the advantage of defectors over coop-
erators. For the SG we make, as in �4�, T=��1, R=�
−1 /2, S=�−1, and P=0, such that the cost-to-benefit ratio
of mutual cooperation is given by r=1 / �2�−1�. It is worth
noting that, in degree-inhomogeneous networks, the local

5b4 34

(a) (b)

A B A Bx

5b4 15

(d)(c)

A B A Bx

FIG. 1. �Color online� Individuals imitate following two differ-
ent update rules, each reflecting a different bias of our social learn-
ing psychology: payoff based imitation and conformist imitation.
Cooperators are shown in light yellow; defectors are shown in dark
blue. Social interaction is modeled by a rescaled prisoner’s dilemma
with T=b�1, R=1, and P=S=0. �a� Successful payoff biased
transmission. When applying a payoff biased rule of imitation, A
can copy B’s strategy and become a defector since B’s payoff is
greater than A’s. �b� Unsuccessful conformist transmission. If A was
to imitate B according to conformity, no transmission would take
place since defectors are in the minority of A’s neighborhood �three
defectors vs four cooperators�. �c� Unsuccessful payoff biased trans-
mission. B will not copy A’s strategy under a payoff biased rule
since A’s payoff is smaller than B’s. �d� Successful conformist
transmission. Conformist transmission from A to B can take place
because cooperators constitute the majority in B’s neighborhood
�five cooperators vs one defector�.
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replicator dynamics using accumulated payoff is not invari-
ant with respect to affine transformations of the payoff ma-
trix �20,21�. Although this fact invalidates generalizations of
the obtained results to the extended parameter space, it al-
lows us to compare our results with relevant previous work.

Before studying our model with actual network models
�rings and scale-free networks� by means of numerical simu-
lation, we briefly present analytical results obtained using the
mean-field method and the pair approximation. Such analyti-
cal results are important in order to identify the dynamical
regions of the system and to serve as starting point for com-
parisons with the dynamics on actual networks studied in
Sec. IV.

III. ANALYTICAL RESULTS

A. Mean-field approach

Within the framework of the traditional mean-field ap-
proach �6� network locality is ignored and the system is as-
sumed to have an infinite size, leading to an infinite well-
mixed population. In this case, it is easy to show that the
time evolution of the fraction of Cs, 	, is ruled by the fol-
lowing equation:

	̇ = 	�1 − 	��
��C − �D� + ��2	 − 1�� , �1�

where �C=	R+ �1−	�S and �D=	T+ �1−	�P are the aver-
age payoffs to Cs and Ds and 
= �1−�� /�. Equation �1� �or
a similar formula� has been derived in related work on cul-
tural transmission processes including both payoff biased
imitation and conformist imitation �10,12–14,22�. The dy-
namics has the two trivial fixed points 	0

�=0 and 	1
�=1, as

well as �possibly� one internal nontrivial equilibrium given
by

	� =

�P − S� + �


�R − T + P − S� + 2�
.

For �=0 �pure payoff biased transmission�, Eq. �1� recovers
the standard replicator dynamics of the original game,
whereas for �=1 �pure conformist transmission�, Eq. �1� is
equivalent to the replicator dynamics of a pure coordination
game with internal �unstable� equilibrium 	�=1 /2. For 0
���1, variations in the amount of conformity and the en-
tries of the payoff matrix can change the evolutionary dy-
namics of the social dilemma. In particular, the global behav-
ior of the system depends on the two critical values, �D
= �S− P� / ��+S− P� and �C= �T−R� / ��+T−R�, so that the
system is in one of the following four dynamical regions:

�1� Dominant defection ����D∧���C�: 	0
�=0 is the

only stable equilibrium. In this case, Cs are doomed to ex-
tinction regardless of their initial frequency in the popula-
tion.

�2� Coexistence ����D∧���C�: only the internal equi-
librium 	� is stable. Cs and Ds coexist in equilibrium at
proportions given by 	� and 1−	�, respectively.

�3� Bistability ����D∧���C�: both 	0
�=0 and 	1

�=1 are
stable, whereas the internal fixed point 	� is unstable. In this
case, the evolutionary dynamics depends on the initial fre-
quency of Cs, 	�0�. For 	�0��	� cooperation prevails,
whereas it vanishes for 	�0��	�.

�4� Dominant cooperation ����D∧���C�: 	1
�=1 is the

only stable equilibrium; Cs get fixed regardless of their ini-
tial frequency in the population.

These regimes can be seen in Fig. 2, which shows the
phase diagrams of the two rescaled games. In the PD with
conformity, S� P⇒�D�0, so that only dominant defection
and bistability are possible. In particular, for the rescaled
version of the game, conformity can make the system
bistable if �� �b−1� / �2b−1�. However, for all values of b
in the bistability region, the basin of attraction of 	0

� is
greater than the basin of attraction of 	1

�, i.e., Cs initially in
the minority are doomed to extinction regardless of their
initial proportion and the values of b and �. In the SG with
conformity, the four dynamical regions above described are
possible, with �D= �1−r� /2 and �C=r / �1+2r�. In the coex-
istence region, the equilibrium proportion of Cs is larger than
what is expected in the �=0 case when r�1 /2 and smaller
when r�1 /2. In the bistability region, the basin of attraction
of 	1

� is greater than the basin of attraction of 	0
� for r

�1 /2.
In summary, conformity can promote cooperation in the

PD to a certain degree in the mean-field limit. If in the ma-
jority �and if conformity is strong enough� Cs now have a
chance of surviving invasion from Ds and eventually take
over the whole population �13�. In the SG, whether confor-
mity helps or hinders the evolution of cooperation actually
depends on the cost-to-benefit ratio r. Cs are favored for r
�1 /2 and disfavored for r�1 /2.

B. Pair approximation

Pair approximation �23,24� improves over the traditional
mean-field approach for structured populations by consider-
ing the frequency of strategy pairs �i.e., C-C, C-D, and D-D�.
Since the technique assumes regular graphs without loops, it
only applies to Bethe lattices in a strict sense �25�. However,
pair approximation has been used to predict evolutionary dy-
namics on more general regular graphs with considerable
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FIG. 2. �Color online� Phase diagrams of the mean-field solu-
tions for the PD with conformity on the b-� plane �left� and for the
SG with conformity on the r-� plane �right�. For the PD, the system
can be in the dominant defection �D� or the bistability �C or D�
region. For the SG, dominant cooperation �C� and coexistence �C
+D� are also possible outcomes. Darker colors indicate more defec-
tion in the average. In the C or D region, colors indicate the size of
the basin of attraction for the cooperative equilibrium. In the C
+D region, colors indicate the equilibrium proportion of Cs.
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success �16,25�. We extended the pair-dynamics model pre-
sented in the supplementary information in Ref. �16� to in-
vestigate the cultural evolutionary dynamics of social dilem-
mas on graphs. The pair approximation of our model leads to
a system of ordinary differential equations, tracking changes
in the proportions pc,c, pc,d, and pd,d of the C-C, C-D, and
D-D links in the population graph, respectively. The resulting
system, although impossible to solve analytically due to the
nonlinearity of the equations, can be solved numerically after
specifying suitable initial conditions.

Figure 3 shows the phase diagrams of the pair approxima-
tion of our model for regular graphs with degrees k=4 and
k=8. The figures were constructed by numerically integrat-
ing the equations under different initial proportions of Cs
�	�0�= �0.1,0.2, . . . ,0.9�� and averaging over all initial con-
ditions. Pure spatial effects can be seen when �=0. For the
PD, the dynamical regime of the game is no longer of domi-
nant defection but of coexistence. Locality of interactions
thus favors Cs by allowing them to survive extinction. In
addition to this classical result, for k=4 conformity is largely
favorable to Cs. Indeed, augmenting � increases the propor-
tion of Cs in the coexistence region and, depending on the
value of b, can shift the system to the region of dominant
cooperation. In the SG with k=4 conformity has similar ef-
fects, resulting in an analogous dynamic picture. The fact
that the SG represents a less stringent dilemma makes larger
the area of dominant cooperation. For k=8, phase diagrams
get closer to those predicted by the mean-field method �see
Fig. 2�, but important levels of cooperation are still sus-

tained. In the PD, for instance, the basins of attraction of the
cooperative equilibrium in the bistability region are larger
than those expected in a well-mixed population �compare the
top right panel of Fig. 3 with the left panel of Fig. 2�.

In a nutshell, when the population of players possesses
local structure, a given amount of conformity in the imitation
rules of the players is able to foster cooperation at least for
low values of the mean degree k. The reason for this is the
easier formation of clusters of individuals playing the same
strategy induced by conformist imitation.

IV. SIMULATION RESULTS

We now turn our attention to actual networks as popula-
tion topologies, in particular �i� rings �regular one-
dimensional lattices with cyclic boundary conditions� with
degrees k=4, k=8, and k=16 and �ii� Barabási-Albert scale-

free networks �26� with average degrees k̄=4, k̄=8, and k̄
=16. For both types of networks we generated graphs of size
N=104. In the case of rings, graphs are constructed by ar-
ranging the nodes on a circle and connecting each node to
the k most-neighboring nodes.

We study the model by Monte Carlo simulations in popu-
lations randomly initialized with 50% Cs and 50% Ds �but
see Sec. IV C for other initial conditions�. The probability �
of conformist transmission was set to �� �0,0.5� in steps of
0.1. We privilege values of ��0.5 so that dynamics are pri-
marily driven by payoff differences in the competing strate-
gies. However, we also study the limiting case �=1 in Sec.
IV D and the case 0���1 in Sec. IV C. The advantage of
defectors b �PD� and the cost-to-benefit ratio r �SG� were
varied in steps of 0.05. We carried out 50 runs for each
couple of values of � and the game parameter. For the scale-
free networks, we used a fresh graph realization in each run.
The average final frequency of Cs, 	̂, was obtained by aver-
aging over 103 time steps after a relaxation time of 104 time
steps.

A. Results for rings

Figure 4 summarizes the results obtained for the PD and
the SG on rings with k=4. These plots confirm the results
previously obtained for the standard �=0 case on these
population topologies �4,18�, which in turn are qualitatively
similar to those obtained for square lattices �3,16�. In the PD,
Cs are able to survive for low values of b by forming clusters
wherein they interact more often with their own strategy than
what is expected in well-mixed populations. Cs can thus ben-
efit from mutual cooperation and counterbalance the exploi-
tation of Ds at the borders of the clusters �17�. In the SG,
spatial structure hinders the evolution of cooperation �16�,
such that only for small values of r �i.e., r�0.3� the final
fraction of Cs is higher than what is expected in a well-
mixed population. As it is evident from our results, confor-
mity enhances cooperation in rings, moving rightward the
critical value b� for which 	̂=0 in the PD and the value r� for
which 	̂ becomes smaller than the corresponding proportion
in a well-mixed population in the SG. Furthermore, the dif-
ferent curves are ordered in a way that the higher the �, the
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FIG. 3. �Color online� Phase diagrams of the pair approxima-
tions for the PD with conformity on the b-� plane �top row� and the
SG with conformity on the r-� plane �bottom row�. The first col-
umn shows the results for k=4 and the second column for k=8. The
system exhibits different dynamical regimes depending on the
game: dominant cooperation �C�, dominant defection �D�, coexist-
ence �C+D�, and bistability �C or D and C+D or C�. In the C
+D or C region, the system can stabilize in a mixed state or in pure
cooperation. Darker colors indicate more defection in the average.
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higher 	̂ for all values of b and r �except for the SG, r
=0.5, �=0.1� and the larger the critical values b� and r�.

Figure 5 plots the results for rings with k=8. In the PD,
conformity enhances cooperation even more pronouncedly
than in the k=4 case. Indeed, the threshold b� has moved
rightward for every value of �. Such trend is still present in

the results obtained for rings with k=16 �not shown here to
avoid cluttering the figures�. In the SG, the increase in the
degree of the graph makes conformity cooperation-
enhancing up to a threshold value r̂ �where a curve with �
�0 crosses the curve with �=0� but detrimental afterward.
As b� in the PD, also r̂ moves rightward as � increases.

With respect to simulation results, pair approximation
tends to underestimate cooperation for low values of � and b
or r and to overestimate it for medium to large values of
these parameters. In the PD with conformity, results for k
=8 are rather pessimistic and are much closer to what we
have obtained for random graphs �data not shown here�. This
is not surprising since random graphs are locally similar to
Bethe lattices �27�. Notice, however, that pair approximation
predicts reasonably well the cooperation-enhancing effects of
conformity in the PD and the ordering of the curves for dif-
ferent values of �. Also, for the SG, pair approximation ac-
curately predicts the fact that the curves with conformity
���0� are above the curve without conformity ��=0� when
k=4 �lower panels of Fig. 4�, but that they cross it when k
=8 �lower panels of Fig. 5�. This means that pair approxima-
tion correctly predicts the fact that, for k=8, there is a point
up to which conformity helps Cs but beyond which Ds are
favored with respect to the standard case without conformity.

B. Results for scale-free graphs

Let us now turn our attention to the results obtained for
scale-free networks �Fig. 6�. When imitation is strictly payoff
biased ��=0� these degree-heterogeneous graphs importantly
foster cooperation in both the PD and the SG with respect to
what is obtained in rings and other degree-homogeneous
graphs �4�. As an aside, we note that the higher the average
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while predictions by pair approximation are shown in the left pan-
els. Mean-field approximations for the SG and �=0 are shown with
dotted lines.
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FIG. 6. �Color online� Final average frequency of Cs on scale-
free networks for the PD �upper panels� and the SG �lower panels�
as a function of b �PD� or r �SG� for different values of the pro-

pensity to conform �. Results are shown for k̄=4 �left panels� and

k̄=8 �right panels�. Mean-field approximations for the SG without
conformity ��=0� are shown with dotted lines.
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degree k̄, the lower the gains in cooperation �28�. The addi-
tion of conformity has important consequences in the evolu-
tion of cooperation on scale-free graphs. In the PD, confor-
mity improves 	̂ for all values of b only for a scale-free

topology with k̄=4 and ��0.3. For the other cases, confor-
mity does not hamper cooperation for small values of b but is
detrimental for medium to large values of the game param-

eter. Furthermore, the threshold value b̂ above which 	̂ is
higher than in the case without conformity is a monotoni-

cally decreasing function of both � and k̄, such that the
higher the amount of conformity and the average connectiv-

ity of the graph, the smaller the value of b̂. Particularly, for

scale-free networks with k̄=8 and ��0.2, conformity weak-
ens the advantage of these graphs in promoting cooperation
to a point that 	̂ becomes comparable to the corresponding
fraction obtained in rings �compare the right upper panels of
Figs. 5 and 6�.

Results for the SG on scale-free networks �lower panels
of Fig. 6� are qualitatively similar to those obtained for the
PD. Again, conformity is beneficial for cooperation for all

values of the game parameter r only for k̄=4 and ��0.3.
For the remaining cases, there is a threshold value r̂ of the
cost-to-benefit ratio above which 	̂ is smaller than the corre-
sponding frequency of Cs in the �=0 case. We note again the
fact that the higher the value of �, the lower the value of r̂.

Finally, and as in the PD, for k̄=8 and ��0.2 there are no
important quantitative differences in 	̂ between rings and
scale-free networks: scale-free networks have again lost the
cooperation-enhancing capabilities they feature when imita-

tion is strictly payoff biased. For k̄=8 and high values of r,
the addition of conformity can even make Cs go extinct,
which would not happen in the nonconformist case.

C. Dependence on the initial conditions

In order to investigate the robustness of cooperation and
to study the influence of the initial fraction of Cs 	�0� we

have also run simulations for the PD on rings and scale-free
graphs for k̄=8 starting from values of 	�0� other than 0.5
and on an extended range of values of � going from 0 to 1.
Results are shown in Fig. 7 in the form of phase diagrams for
each initial condition. In contrast to the notion of bistability
in a system of ordinary differential equations �such as those
resulting from the mean-field approach and the pair approxi-
mation�, here we define bistability as the ability of the sys-
tem to reach either full cooperation or full defection starting
from the same global initial conditions due to its stochastic
dynamics and finite size.

Not unexpectedly, initial conditions influence the final
outcomes of the simulations, so that the strategy initially in
the majority is always favored with respect to the case when
	�0�=0.5. Notice, however, that the effects of conformity are
still qualitatively different for each of the two types of net-
works considered in this study. On these phase diagrams the
transition from the region of dominant cooperation �C� to
dominant defection �D� is steeper on rings, where the two
zones with monomorphic populations are divided by a nar-
row region of coexistence �C+D�. On scale-free networks a
large region of bistability �C or D� tends to be formed in the
middle of the parameter’s space, being the largest for 	�0�
close to 50%. Indeed, the cultural evolutionary dynamics are
much more sensitive to the initial conditions when applied
on top of scale-free networks than when they are played on
top of rings. For rings, conformity favor Cs even if they are
initially in the minority, such that, in general, the higher the
value of � the higher the final fraction of Cs in the popula-
tion. For scale-free networks, conformity can be favorable to
cooperation when Cs are initially in the majority but decid-
edly detrimental if they are in the minority. The remarkable
observation is that in scale-free networks even a small
change in the initial fraction of Cs can drastically change the
final outcome �see the second and fourth images in the lower
row of Fig. 7 for 	�0�=0.45 and 	�0�=0.55�. It would be
tempting to compare the numerical results for scale-free
graphs with those obtained analytically in the mean-field
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FIG. 7. �Color online� Phase diagrams for the PD game on rings with k=8 �top row� and on scale-free graphs with k̄=8 �bottom row� as
a function of b and �. The images are for increasing initial fractions of cooperation 	�0� from left to right.
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case and with the pair approximation �Figs. 2 and 3�. How-
ever, this cannot be done as both the mean-field and pair
approximation approaches give poor results in highly degree-
inhomogeneous networks.

D. Pure conformist dynamics

We briefly comment on the case with �=1 which is spe-
cial as the dynamics is completely driven by the majority
rule and games’ payoffs play no role. Figure 8 shows what
happens in this case as a function of the network’s average

degree k̄ and the initial proportion of Cs. For k̄=2 there is a
large coexistence region for both graphs, and the pure equi-
libria have relatively small basins of attraction. With increas-

ing k̄, the coexistence region decreases so that a greater con-
nectivity favors fixation in a monomorphic population.

Whereas in rings coexistence is still reached for k̄ as large as

12, for scale-free networks such regime disappears for k̄
�5. For these networks, only in the narrow central strip
around 	�0�=0.5 may bistability arise. Note that in this case
the C and D labels indicating cooperators or defectors are
purely conventional as payoffs �and so the behavioral strate-
gies of the individuals� are completely ignored.

V. DISCUSSION

Conformity and network reciprocity are able to act to-
gether and foster cooperation in degree-homogeneous graphs
for social dilemmas such as the PD and the SG. The basic
principle behind network reciprocity is the formation of clus-
ters of related individuals leading to assortative interactions
that favor Cs. Conformity further helps such cluster forma-
tion, thus improving the efficiency of cooperative behavior in
a network of interacting individuals.

More interestingly, conformity may hinder the evolution
of cooperation on the otherwise cooperation-promoting
scale-free networks. The different dynamical organization of
cooperation in degree-heterogeneous graphs with conformity
can explain the reason of such phenomenon. When individu-
als imitate exclusively according to a payoff bias, Cs and Ds
coexist in quasiequilibrium, with some nodes fixed in coop-
erative or defective behavior and others where there is no

fixation and cycles of invasion follow indefinitely �29�. Thus,
the gradual drop in cooperation seen in Fig. 6 for the case
�=0 is mostly due to fluctuating individuals spending less
and less time engaging in cooperative behavior. This dy-
namical picture changes when individuals imitate not only
according to a payoff bias but also to conformity. In this

case, for k̄=8, the population always reaches one of the two
absorbing states, so that in the limit only one strategy gets
fixed: Cs for low values of b, Cs or Ds �with a certain prob-
ability� for intermediate values of b, and Ds for large values
of b �see also the bottom row of Fig. 7�. In general and
contrary to what happens without conformity, intermediate
levels of cooperation for ��0 �when averaging over several
runs� are not the result of the coexistence or fluctuation of
different strategies but of the fact that, for an interval of
values of b, whose length increases with �, the system some-
times converges to the cooperative equilibrium and some
others to the defective equilibrium �see bottom row of Fig. 7,
central image�. Additionally, evolutionary dynamics develop
much faster in the presence of conformity. Figure 9 illus-
trates these observations for the case of scale-free networks

with k̄=8 and b=1.35. Without conformity �upper panel of
Fig. 9� the fraction of Cs for each run slowly increases dur-
ing the initial part of the simulation until, eventually, it sta-
bilizes around 0.9. Conversely, with conformity �lower panel
of Fig. 9�, very early in the evolutionary process the popula-
tion goes either to full cooperation or to full defection.

We can gain an insight into the interplay between network
reciprocity and conformity by making use of the notion of
the temperature of players �5,30�. Hot players are those who
play more since they have a large number of neighbors,
whereas cold players are those who have few neighbors and,
consequently, play less games. By playing more often and
provided that payoffs are positively biased �i.e., S�0 in the
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FIG. 9. �Color online� Evolution of the frequency of Cs on

scale-free networks �k̄=8� during the first 500 time steps for the PD,
without conformity �upper panel� and with conformity �lower
panel�. In both figures, b=1.35. Twenty distinct curves are shown.
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PD�, hot players get higher accumulated payoffs than cold
players. Under pure payoff biased imitation ��=0� this im-
plies that hot players are also more successful in being imi-
tated and in disseminating their strategies �30�.

Both Cs and Ds do better when they are surrounded by
Cs. By spreading defective behavior, hot Ds become less and
less successful since the number of their C neighbors de-
creases. Hot Cs, on the contrary, see their payoff increased
by spreading their own strategy. The more hot Cs are imi-
tated the more they earn and the more difficult it is for a
surrounding D to invade. A typical example of such “hub
dynamics” is illustrated in Fig. 10 �upper panel� for the most
connected hub of a scale-free network. The hub is D at the
beginning of the simulation, while the rest of the population
is initialized to around 50% Cs. Many C neighbors imitate
the defective hub �or other surrounding Ds� during the first
steps of simulation, so that the proportion of C neighbors is
reduced to approximately 30%. As a consequence, the total
payoff of the hub is reduced, and the hub becomes vulner-
able to invasion from a neighboring C. When the hub be-
comes a C, more and more of its D neighbors also switch
their strategies. Consequently, the proportion of C neighbors
�and the total payoff to the hub� increases and is maintained
at a high level afterward. The presence of such positive feed-
back mechanism, and the fact that it only works for Cs,
greatly enhances cooperation in degree-heterogeneous
graphs and, particularly, in scale-free networks �31�.

The introduction of conformity decreases the bias in the
flow of information in degree-heterogeneous graphs, making
hubs vulnerable to invasion from their cold neighbors. While
hubs are unlikely to imitate their low connected neighbors
when using a payoff biased rule, nothing prevents them from
imitating a cold surrounding player if it holds the strategy of
the local majority �see Fig. 1�d��. Since the fraction of Cs
generally decreases at the outset of the simulation �see the
first time steps of the curves shown in Fig. 9�, conformity
further favors Ds, which become predominant in the popula-
tion. An example of this dynamics is shown in Fig. 10 �lower
panel�. Initially, the hub is a C. Many of the hub’s neighbors
turn to defection during the first time steps, making coopera-
tion the less common strategy in the hub’s neighborhood.
Around the 100th time step, the hub imitates by conformity
one of its defector neighbors, leading to a quicker decrease in
the proportion of Cs in its neighborhood. Shortly after, Cs
completely vanish around the most connected hub. During
those first time steps, hubs imitating according to a conform-
ist bias will have many chances of becoming Ds. When Cs
are not initially in the large majority, such initial asymmetry
in the strategies of the hubs can account for the negative
effects of conformity in the evolution of cooperation in
scale-free networks. Conformity partly reverses the flow of
information on degree-heterogeneous networks so that hubs
no longer conduct the dynamics and instead quickly conform
to the general trend of the whole population.

VI. CONCLUSIONS

To sum up, we have investigated the effects of conformity
in the evolution of cooperation on regular one-dimensional
lattices �rings� and scale-free networks. This was done by
proposing an updating rule that is a stochastic average of the
traditional local replicator dynamics, which models payoff
biased imitation, and a conformist biased rule of transmis-
sion favoring the most common variants around focal indi-
viduals. We explored rings and scale-free networks with dif-
ferent average degrees, as well as different values of the
propensity to conform �. Two games representing social di-
lemmas were studied: the rescaled versions of the PD and the
SG. In addition to Monte Carlo simulations, we also used an
extended pair-dynamics model to predict the average fraction
of cooperators in equilibrium and compare them with the
results obtained from our simulations.

The results presented in this paper show that whether con-
formity strengthens or weakens the evolution of cooperation
depends on the intrinsic characteristics of the underlying
graph. In the PD, conformity favors cooperation on rings by
allowing clusters of Cs forming more easily. Conversely, it
can hinder cooperation in scale-free networks for medium to
large values of b due to the exposure of hubs to the opinions
of the local majority in their neighborhoods. In particular and
already for small amounts of conformity in the imitation
rules of the players, scale-free networks do not show the
great improvement over regular structures that has been pre-
viously reported in the literature. In the SG, conformity fos-
ters cooperation on rings in the case k=4 for all values of the
cost-to-benefit ratio r and for low to medium values of r in
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FIG. 10. �Color online� Evolution of cooperation around the

most connected hub of a scale-free network with k̄=8. The game is
a rescaled PD with b=1.35 for �=0 �upper panel� and �=0.1
�lower panel�. The fraction of C neighbors is shown in solid lines
and the strategy of the hub in dashed lines �D corresponds to 0; C to
1�. As a reference, the level of 50% cooperation is depicted in
dotted lines. The most connected hub is initially set to D �upper
panel� or to C �lower panel�. The rest of the population is initialized
to around 50% Cs.
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the case k=8. In scale-free networks, conformity is rather
detrimental for large values of r. Thus, for both the PD and
the SG, conformity often hinders the evolution of coopera-
tion on scale-free networks for the cultural evolutionary dy-
namics described in this paper.

It is worth pointing out that other factors dismissing the
advantage of scale-free networks in the evolution of coop-
eration have been identified, such as participation costs �30�,
other positive affine transformations of the payoff matrix
�20,21�, and the use of average instead of accumulated pay-
offs �32�. While these factors are extrinsic to the imitation
rules of the agents, conformity is a simple mechanism un-
doubtedly present in our social learning psychology and cen-
tral to better understand cultural dynamics and the way co-
operation evolves on real social networks.
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APPENDIX: PAIR APPROXIMATION

An analytical approximation of the dynamics of evolu-
tionary games on graphs can be obtained by means of pair
approximation �23,24�. For detailed surveys of this technique
and its applications to games on graphs, we refer the inter-
ested reader to Refs. �6,16,25�. We limit ourselves to briefly
introduce the pair approximation and to explain how we have
extended it for taking into account conformity in the imita-
tion rules of the players.

Pair approximation is a method for constructing a system
of ordinary differential equations for the global frequencies
of strategies by tracking the changes in the frequencies of
strategy pairs. In our case, we are interested in determining
the global frequency 	 of Cs by tracking the fluctuations in
pc,c, pc,d, pd,c, and pd,d, where ps,s� is the probability of hav-
ing an individual playing strategy s connected to an indi-
vidual playing strategy s�. For pair approximation to be con-
sistent with the mean-field approach, it is assumed that ps
=�s�ps,s�. Furthermore, and in order to “close” the set of
equations, configurations of triplets and more complicated
configurations are approximated by the configuration prob-
abilities of strategy pairs. For example, the configuration
probability of the triplet s ,s� ,s� is approximated by ps,s�,s�
= ps,s�ps�,s� / ps�. It is important to note that pair approxima-
tion �i� requires regular graphs and �ii� corrections arising
from loops are ignored. Finally, note that the predictions of
the pair approximation for any two regular graphs with the
same degree k are exactly the same. This allows us to com-
pare our results to those in �16� when �=0.

Let us consider individuals sitting on the vertices of a
graph of degree k. Whenever a randomly chosen site A up-

dates its strategy, a random neighbor B is selected as A’s
cultural model. Common neighbors of any pair of vertices
are considered to be independent by pair approximation �i.e.,
loops are neglected�. Thus, let us denote by a1 , . . . ,ak−1
�b1 , . . . ,bk−1� the k−1 the neighbors of A �B� other than B
�A�. The probability of a generic configuration �see Fig. 11�
is given by

pA,B

	
i=1

k−1

pai,A
pbi,B

pA
k−1pB

k−1 .

The probability that the pair A ,B becomes B ,B is calculated
by multiplying the transition probability 
A→B by the con-
figuration probability and summing over all possible con-
figurations, so that

pA,B→B.B = �
a1,. . .,ak−1

�
b1,. . .,bk−1


A→B � pA,B

	
i=1

k−1

pai,A
pbi,B

pA
k−1pB

k−1 .

In our model, the transition probability 
A→B depends not
only on the payoffs of A and B but also on � �the probability
to imitate according to a conformist bias� and on the number
of players among a1 , . . . ,ak−1 playing the same strategy of A
and B. The transition probability is given by


A→B = �1 − ��f
�B�b1, . . . ,bk−1� − �A�a1, . . . ,ak−1�
k�

�
+ �f
nB�a1, . . . ,ak−1,B� − nA�a1, . . . ,ak−1,B�

k
� ,

where �B�x1 , . . . ,xk−1�, �A�x1 , . . . ,xk−1� denote the payoffs
of B�A� interacting with x1 , . . . ,xk−1 plus A�B�, and
nB�a1 , . . . ,ak−1 ,B�, nA�a1 , . . . ,ak−1 ,B� specify the number of
players with strategy B�A� among a1 , . . . ,ak−1 and B. The
definitions of the parameter � and the function f are given in
Sec. II.

Whenever A imitates B, the pair configuration probabili-
ties change so that pB,B, pB,ai

, . . . , pB,ak−1
increase, while pA,B,

pA,ai
, . . . , pA,ak−1

decrease. All these changes lead to a set of
ordinary differential equations governing the dynamics of the
system,

A

a1

a2

ak-1

B

b1

b2

bk-1

FIG. 11. A generic configuration for pair approximation. A is the
focal individual, B is A’s cultural model, a1 ,a2 , . . . ,ak−1 are A’s
neighbors other than B, and a1 ,a2 , . . . ,ak−1 are B’s neighbors other
than A. A and B are assumed to have no common neighbors, i.e.,
triangles and loops are neglected.
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ṗc,c = �
a1,. . .,ak−1

�nc�a1, . . . ,ak−1� + 1�	
i=1

k−1

pd,ai �
b1,. . .,bk−1

	
j=1

k−1

pc,bj

���1 − ��f
�c�b1, . . . ,bk−1� − �d�a1, . . . ,ak−1�
k�

� + �f
2nc�a1, . . . ,ak−1� + 2 − k

k
�


− �
a1,. . .,ak−1

nc�a1, . . . ,ak−1�	
i=1

k−1

pc,ai �
b1,. . .,bk−1

	
j=1

k−1

pd,bj

���1 − ��f
�d�b1, . . . ,bk−1� − �c�a1, . . . ,ak−1�
k�

� + �f
 k − nc�a1, . . . ,ak−1�
k

�
 ,

ṗc,d = �
a1,. . .,ak−1


 k

2
− 1 − nc�a1, . . . ,ak−1��	

i=1

k−1

pd,ai �
b1,. . .,bk−1

	
j=1

k−1

pc,bj

���1 − ��f
�c�b1, . . . ,bk−1� − �d�a1, . . . ,ak−1�
k�

� + �f
2nc�a1, . . . ,ak−1� + 2 − k

k
�


− �
a1,. . .,ak−1


 k

2
− nc�a1, . . . ,ak−1��	

i=1

k−1

pc,ai �
b1,. . .,bk−1

	
j=1

k−1

pd,bj

���1 − ��f
�d�b1, . . . ,bk−1� − �c�a1, . . . ,ak−1�
k�

� + �f
 k − nc�a1, . . . ,ak−1�
k

�
 ,

where nc�a1 , . . . ,ak−1� gives the number of Cs among
a1 , . . . ,ak−1 and �c�x1 , . . . ,xk−1�, �d�x1 , . . . ,xk−1� denote the
payoffs of a C �D� interacting with x1 , . . . ,xk−1 plus a D �C�.
Because of the symmetry condition pc,d= pd,c and the con-
straint pc,c+ pc,d+ pd,c+ pd,d=1 these two differential equa-
tions are sufficient to describe the system. Note that when-
ever �=0 the system of equations is equivalent to that
derived in the supplementary information in Ref. �16� and in

the Appendix in Ref. �25�. Following those works, the above
equations also omit the common factor 2pc,d / �	k−1pd

k−1�,
which has no influence in the equilibria of the system. The
equilibrium values p̂c,c, p̂c,d were obtained by numerically
integrating the equations for 1010 time steps after specifying
initial conditions. In all cases, pc,c�0�= �	�0��2, pc,d�0�
=	�0��1−	�0��. The equilibrium frequency of Cs was then
approximated by p̂c= p̂c,c+ p̂c,d.
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