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a b s t r a c t

Indirect reciprocity, one of the many mechanisms proposed to explain the evolution of cooperation, is

the idea that altruistic actions can be rewarded by third parties. Upstream or generalized reciprocity is

one type of indirect reciprocity in which individuals help someone if they have been helped by

somebody else in the past. Although empirically found to be at work in humans, the evolution of

upstream reciprocity is difficult to explain from a theoretical point of view. A recent model of upstream

reciprocity, first proposed by Nowak and Roch (2007) and further analyzed by Iwagami and Masuda

(2010), shows that while upstream reciprocity alone does not lead to the evolution of cooperation, it

can act in tandem with mechanisms such as network reciprocity and increase the total level of

cooperativity in the population. We argue, however, that Nowak and Roch’s model systematically leads

to non-uniform interaction rates, where more cooperative individuals take part in more games than

less cooperative ones. As a result, the critical benefit-to-cost ratios derived under this model in previous

studies are not invariant with respect to the addition of participation costs. We show that accounting

for these costs can hinder and even suppress the evolution of upstream reciprocity, both for

populations with non-random encounters and graph-structured populations.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In addition to kin selection (Hamilton, 1964) and group
selection (Wilson, 1975), different types of reciprocity have been
proposed for explaining altruistic behavior from an evolutionary
perspective (Nowak, 2006). In this paper, we focus on upstream
indirect reciprocity and network reciprocity. Contrastingly to
direct reciprocity (Trivers, 1971; Axelrod and Hamilton, 1981),
which can induce cooperation when individuals base their deci-
sion to cooperate on the outcome of previous encounters with the
same partner, indirect reciprocity is said to occur when ‘the
return is expected from someone other than the recipient of the
beneficence’ (Alexander, 1987). This can happen in one of two
ways. In downstream indirect reciprocity (Nowak and Sigmund,
1998a,b; Leimar and Hammerstein, 2001; Panchanathan and
Boyd, 2003; Brandt and Sigmund, 2004; Ohtsuki and Iwasa,
2004; Nowak and Sigmund, 2005; Brandt and Sigmund, 2006;
Ohtsuki et al., 2006; Ohtsuki and Iwasa, 2007; Uchida and
Sigmund, 2010) or vicarious reciprocity (Sigmund, 2010), first
individual A helps individual B and then C helps A. Downstream
reciprocity is based on reputation: A acquires a good reputation
by helping B, thereby increasing its chances of receiving help by C.
ll rights reserved.
In upstream indirect reciprocity (Boyd and Richerson, 1989;
Nowak and Sigmund, 2005; Nowak and Roch, 2007; Iwagami
and Masuda, 2010), also known as generalized reciprocity
(Pfeiffer et al., 2005; Hamilton and Taborsky, 2005; Rutte and
Taborsky, 2007; Rankin and Taborsky, 2009) or misguided reci-
procity (Sigmund, 2010), first individual A helps individual B and
then B helps C. Upstream reciprocity is based on gratitude or
moral elevation: individuals who receive help are more inclined
to help others in the future. Finally, network reciprocity (Ohtsuki
et al., 2006) is at work when the population structure takes the
form of a spatial or social network in which clusters of coopera-
tors can help each other and resist invasion from surrounding
defectors. Network reciprocity is the generalization of spatial
reciprocity (Nowak and May, 1992) to general network models.
Under some conditions other mechanisms are also at work in
heterogeneous networks, where highly connected individuals can
play an important role in promoting cooperation (Santos and
Pacheco, 2005, 2006; Szabó and Fáth, 2007; Gómez-Gardeñes
et al., 2007; Pacheco et al., 2009).

A simple and general explanation of the evolution of coopera-
tion is the positive assortment between cooperative genotypes
and cooperative phenotypes (Fletcher and Doebeli, 2009). In
stark contrast with direct, downstream and network reciprocity,
upstream reciprocity per se fails to provide such assortment.
Thus, strategies based on upstream reciprocity go to extinction
in well-mixed populations when competing with defectors
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(Nowak and Roch, 2007; Rankin and Taborsky, 2009; Sigmund,
2010). Despite this fact, models of upstream reciprocity are worth
studying for several reasons. Firstly, there is ample empirical
evidence of upstream reciprocity occurring in humans (Berkowitz
and Daniels, 1964; Isen, 1987; Dufwenberg et al., 2001; Güth
et al., 2001; Bartlett and DeSteno, 2006; Stanca, 2009) and some
evidence in non-human animals such as Norwegian rats (Rutte
and Taborsky, 2007). Secondly, it has been theoretically shown
that upstream reciprocity can evolve if there is some pre-existent
assortment among strategies (Rankin and Taborsky, 2009). Such
assortment can be provided, for instance, by the random forma-
tion of small groups (Boyd and Richerson, 1989; Pfeiffer et al.,
2005), by incorporating group-leaving behavior when experien-
cing defection (Hamilton and Taborsky, 2005), or by the simulta-
neous presence of another cooperation-promoting mechanism,
such as direct reciprocity (Nowak and Roch, 2007) or network
reciprocity (Nowak and Roch, 2007; Iwagami and Masuda, 2010).
Finally, when acting in tandem with these mechanisms, the
presence of upstream reciprocity seems to lead to higher levels
of cooperation and/or lower critical cost-to-benefit ratios than
those obtained by direct or network reciprocity alone (Nowak and
Roch, 2007; Iwagami and Masuda, 2010).

Usually, indirect reciprocity is theoretically studied in the
framework of the Donation game. Each round of the game, two
players are chosen at random from the population. One is
assigned the role of the donor and the other the role of the
recipient. The donor has the option of either helping the recipient
or not. If the donor chooses to help, the donor will incur a cost c

while the recipient obtains a benefit b, with b4c40. If the donor
refuses to help, payoffs are left unchanged. In Nowak and Roch
(2007) and Iwagami and Masuda (2010), Donation games are
played along ‘chains of altruism’ leading to random walks in the
population of players. Each player can start a chain of altruism by
helping a second player in the population, who can in turn help a
third player, and so on and so forth. Such sampling of donors and
recipients differs from the one normally used in standard models
of indirect reciprocity (cf. Nowak and Sigmund, 1998b) in which
interaction partners are randomly and independently sampled
from the population. In particular, whereas in standard models
individuals interact in average the same number of times (half of
the times as donors, half of the times as recipients) in Nowak and
Roch’s model more cooperative players end up interacting more
often than less cooperative players.

Whenever an evolutionary game model leads to non-uniform
interaction rates, some questions arise regarding the generality of
the obtained results. It is not clear, for instance, whether a given
strategy is successful because it ‘plays well’ against competitors
or because it plays more often, nor if the assumption of having
individuals with no limitations regarding the number of interac-
tions they engage in per generation is biologically or socially
grounded. It is reasonable to think that a number of extrinsic
constraints limit the interacting capacity of individuals or that
participation in a game can have a non-negligible cost. This is an
issue that has been dealt with in the context of evolutionary
games on heterogeneous networks (Santos and Pacheco, 2006;
Santos et al., 2006; Masuda, 2007; Tomassini et al., 2007;
Tanimoto and Yamauchi, 2010). Different methods have been
introduced in order to control for the non-uniformity of interac-
tion rates, such as imposing cutoffs in the interaction distribu-
tions (Santos et al., 2006), using the average payoff instead of the
accumulated payoff when defining fitness (Santos and Pacheco,
2006; Tomassini et al., 2007; see also Taylor and Nowak, 2006)
and introducing participation costs (Masuda, 2007; Tanimoto and
Yamauchi, 2010). All these studies have shown that adding such
limits can hinder and even suppress the evolution of cooperation
based on network reciprocity in heterogeneous networks.
In this paper, we re-examine the model of upstream recipro-
city first proposed by Nowak and Roch (2007) and further
investigated by Iwagami and Masuda (2010). Nowak and Roch
(2007) showed that upstream reciprocity is viable when acting
in tandem with direct reciprocity or when the population is
arranged in a one-dimensional array. Iwagami and Masuda
(2010) extended the model to more complex network structures
and showed that heterogeneous networks can be important
amplifiers of upstream reciprocity. We show that non-uniform
interaction rates naturally arise in the original model by Nowak
and Roch (2007) and that when population structure favors some
assortment of strategies more cooperative players end up playing
more often as recipients than less cooperative players, i.e. that
interaction rates are strategy-dependent. We find that the evolu-
tionary dynamics of upstream reciprocity are modified when
controlling for such non-uniformity by introducing participation
costs, to the extent that whether or not upstream reciprocity is
able to hitch-hike on mechanisms such as direct or network
reciprocity depends on the cost of participation in the game.
2. Upstream reciprocity with participation costs

We briefly describe Nowak and Roch’s model and its extension
to include participation costs. A population V of n individuals
plays the upstream reciprocity game. The strategy implemented
by player v is denoted by Svðpv,qvÞ, where qv is the probability to
initiate a chain of gratitude and pv is the probability to pass a
chain initiated by another player. Consider the random walk
originated in player v. The random walk ends with probability
1�qv or moves to another player wAV�fvg with probability qv.
Then the walk ends with probability 1�pw or is passed to another
player in V�{w} with probability pw. The process is repeated until
the random walk ends. Each time the random walk enters a player
it brings a benefit b to that player. Each time the random walk
exits a player (without ending) it costs c to that player. In order
for the game to be a social dilemma, b4c40.

Let us denote by Nin
v the number of times the random walk

started by any player reaches v and by Nout
v the number of times

such walk exits v without ending. In other words, Nin
v and Nout

v are,
respectively, the number of times player v has acted as recipient
and the number of times it has acted as donor. Finally, denote by
Nv the total number of participations in a game by player v, i.e.
Nv :¼ Nin

v þNout
v . With these definitions, the accumulated payoff to

player v is given by

pv ¼Nin
v b�Nout

v c: ð1Þ

This expression assumes that participation in a game is free.
Let us now suppose that both the donor and the recipient pay a
fee d40 for participating in the game. With participation costs,
every time the random walk of gratitude reaches a player, it
brings a net profit b�d to that player, whereas every time the
walk exits a player, it costs c+d to that player. In order to analyze
the effects of the introduction of participation costs in the game it
thus suffices to make the replacements b-b�d and c-cþd in
Eq. (1). We will make use of this simple fact in the next sections.

Consider now the evolutionary competition between indivi-
duals v and w when fitness is equated with the accumulated
payoff. The difference in fitness can be expressed as

Dp :¼ pv�pw ¼ ðN
in
v �Nin

w Þb�ðN
out
v �Nout

w Þc�ðNv�NwÞd:

When Nv¼Nw, the third term vanishes and the difference in
fitness between players v and w is independent of the cost of
participation d. When NvaNw, however, the difference in fitness
depends on the participation cost d. Evolutionary game dynamics
based on the fitness difference, such as the replicator equation
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(Taylor and Jonker, 1978; Hofbauer and Sigmund, 1998; Weibull,
1995), are thus influenced by the participation cost d when interac-
tion rates are non-uniform.

Consider a random walk entering and exiting a player (i.e. an
individual participating as recipient and immediately as donor),
so that the increase in payoff for such player is equal to
dp :¼ b�c�2d. One can identify two regimes in terms of the
participation cost d: (i) do ðb�cÞ=2, and (ii) d4ðb�cÞ=2. In regime
(i), dp40. In this case, gratitude-related altruists can prevail by
maximizing the number of waves of generosity being initiated
and passed, as long as some mechanism of assortment makes
such waves return more often to gratitude-related altruists than
to other strategists. In regime (ii), dpo0, and the optimal strategy
is now to minimize the number of participations in a game.
Defectors never initiate nor pass waves of generosity. Thus, they
are expected to perform better than gratitude-related altruists in
this regime, and to be evolutionarily stable.

In the following, we confirm these predictions in two models
of upstream reciprocity, each one providing assortment of stra-
tegies in a different way: (i) by assuming non-random encounters,
and (ii) by incorporating network reciprocity. The last model
extends the results by Nowak and Roch (2007) and Iwagami and
Masuda (2010) to cases when participation is costly.
Fig. 1. Transition graph of the Markov chain describing random walks of upstream

reciprocity in the population of players. 0 is the initial state.
3. Upstream reciprocity under assortment of encounters

Consider a population of size n and the interaction between
strategy S1 ¼ Sðp1,q1Þ, of relative frequency x, and strategy
S2 ¼ Sðp2,q2Þ, of relative frequency 1�x. The cooperativity si of
strategy Si, defined as ‘the expected number of secondary altruis-
tic acts induced by a single player per time-step’ (Nowak and
Roch, 2007), is given by si ¼ qi=ð1�piÞ. The expected fitnesses of S1

and S2 are given by their expected accumulated payoffs p1ðxÞ and
p2ðxÞ, and the evolutionary dynamics by the replicator equation,
so that the frequency of S1 in an infinite population evolves
according to

_x ¼ xð1�xÞDpðxÞ, ð2Þ

where DpðxÞ :¼ p1ðxÞ�p2ðxÞ.
We introduce assortment of strategies in a simple manner

(Eshel and Cavalli-Sforza, 1982; Boyd and Richerson, 1989;
Rankin and Taborsky, 2009). We suppose that, once a player of
type Si has decided to initiate or pass a random walk of gratitude,
the probability that the recipient of type Sj is given by sij ¼ sijðxÞ,
with

s11 ¼ sþxð1�sÞ,

s22 ¼ sþð1�xÞð1�sÞ,

and si1þsi2 ¼ 1, for i¼1, 2. The parameter sA ½0,1� is the degree
of assortment: when s¼ 0 interactions are random and we
recover the well-mixed limit; when s40 strategies help their
own type more often than what is expected by chance.

In this section we investigate the number of participations in a
game by a player, and show that this quantity depends on the
cooperativity of its strategy and on the degree of assortment. We
also derive the conditions under which a given strategy is favored
by natural selection in the framework of the replicator dynamics.

3.1. Number of participations

In order to calculate Nin
v and Nout

v for each vAV , we follow
closely the derivation presented in the supplementary material of
Nowak and Roch (2007). For the sake of clarity, we also try to
adopt their notation as much as possible. Notice, however, that
the following results are for the general case of upstream
reciprocity under assortment of encounters imposed by popula-
tion structure, whereas Nowak and Roch targeted the link
between direct and upstream reciprocity.

By a slight abuse of notation, let us denote by Nout
i (resp. Nin

i )
the average number of times that an individual of type Si acts as
donor (resp. recipient) in a Donation game. Let us also denote by
Vi the set of Si players, so that V ¼ V1 [ V2. It is possible to
compute Nout

2 by counting the number of donations originating
in V2 and dividing by the total number of individuals of type S2.
Likewise to compute the number of times a player of type S2 has
acted as recipient. Finally, one can get Nout

1 and Nin
1 from Nout

2 and
Nin

2 by permuting the strategy parameters and the proportions of
the two strategies.

Let us first calculate Nin
2 . In order to calculate this quantity

we consider the Markov chain model shown in Fig. 1. With a
probability x the random walk starts in a player belonging to V1;
with a probability 1�x, in a player belonging to V2. If we define
Mij as the number of times the walk enters any S2 player when the
walk starts on Vi and is conditioned to move to Vj at the first step,
we can write

Nin
2 ¼

P
vAV2

Nin
v

nð1�xÞ

¼
nxðs11q1M11þs12q1M12Þþnð1�xÞðs21q2M21þs22q2M22Þ

nð1�xÞ

¼
q1xðs11M11þs12M12Þþq2ð1�xÞðs21M21þs22M22Þ

1�x
: ð3Þ

In order to calculate Mij, and for mathematical convenience, we
expand the state space and consider all pairs of consecutive
states, such that

U ¼ fu1 ¼ ðV1,V1Þ,u2 ¼ ðV1,V2Þ,u3 ¼ ðV2,V1Þ,u4 ¼ ðV2,V2Þg

is the new extended space state, where the state (Vi,Vj) denotes
the transition between the previous state Vi to the present state
Vj. Thus, the substochastic transition matrix of the Markov chain
excluding the first step (i.e. describing the transitions between
the two lowest states in Fig. 1) is given by

P¼

p1s11 p1s12 0 0

0 0 p2s21 p2s22

p1s11 p1s12 0 0

0 0 p2s21 p2s22

0
BBBB@

1
CCCCA
:

Now, defining

m11 ¼m21 ¼ 0, m12 ¼m22 ¼ 1,
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so that mij is 1 if the walk moves from V to V2 and 0 otherwise, we
have, by the Markov property:

M11

M12

M21

M22

0
BBBB@

1
CCCCA
¼

m11

m12

m21

m22

0
BBBB@

1
CCCCA
þP

M11

M12

M21

M22

0
BBBB@

1
CCCCA
:

Solving this system of equations, we obtain the values Mij.
Plugging them in Eq. (3), we obtain after simplifying

Nin
2 ¼

xð1�sÞðq1�q2Þþq2ð1�sp1Þ

o ð4Þ

with

o¼ 1�½sð1�p2Þþxð1�sÞ�p1�½1�xð1�sÞ�p2: ð5Þ

We can use the same procedure to compute Nout
2 . It suffices to

reinterpret Mij as the number of times the walk exits any S2 player
when the walk starts on Vi and is conditioned to move to Vj at the
first step. In other words, Mij is now the number of times that a
single random walk initiated at Vi and that moves to Vj at the first
step exits any S2 player. Thus, we redefine

m11 ¼m12 ¼ 0, m21 ¼m22 ¼ 1,

i.e. mij is now 1 if the walk moves from V2 to V and to 0 otherwise.
Following the same procedure used before for Nin

2 , we obtain

Nout
2 ¼

q2ð1�sp1Þþxð1�sÞðp2q1�p1q2Þ

o
ð6Þ

with o given by Eq. (5).
Finally, we can get Nin

1 and Nout
1 from Nin

2 and Nout
2 by permuting

the parameters and the proportions of the two strategies, i.e. by
taking p12p2, q12q2, and x2ð1�xÞ. Thus we obtain

Nin
1 ¼
ð1�xÞð1�sÞðq2�q1Þþq1ð1�sp2Þ

o , ð7Þ

Nout
1 ¼

q1ð1�sp2Þþð1�xÞð1�sÞðp1q2�p2q1Þ

o : ð8Þ

When the degree of assortment is zero, it is easy to show that
Nin

1 ¼Nin
2 and that the inequality Nout

2 4Nout
1 simplifies to s24s1.

Thus, when the population is well mixed, all individuals interact
the same number of times as recipients, and individuals of the
more cooperative strategy interact as donors more times than
individuals of the less cooperative strategy. When the degree of
assortment is greater than zero, it can be shown that both
Nin

2 4Nin
1 and Nout

2 4Nout
1 simplify to s24s1. This means that if S2

is more cooperative than S1, S2 individuals interact in more
Donation games than S1 individuals and that, by construction,
more cooperative players play more rounds of the game than less
cooperative players. In summary, for any value of
s, s14s2 ) N14N2, i.e. an individual of the more cooperative
strategy takes part in more games. This fact makes the replicator
dynamics dependent on the participation cost d.

3.2. Difference in accumulated payoffs

The difference in accumulated payoffs between S1 and S2 is
given by

DpðxÞ ¼ ½Nin
1 ðb�dÞ�Nout

1 ðcþdÞ��½Nin
2 ðb�dÞ�Nout

2 ðcþdÞ�

¼ ðNin
1 �Nin

2 Þðb�dÞ�ðNout
1 �Nout

2 ÞðcþdÞ:

Replacing Eqs. (4), (6)–(8) in this formula and simplifying, we
obtain

DpðxÞ ¼ wc=o,

where

w¼ ðb�dÞs�ðcþdÞ,
c¼ q1ð1�p2Þ�q2ð1�p1Þ,

o¼ 1�½sð1�p2Þþxð1�sÞ�p1�½1�xð1�sÞ�p2:

Selection favors S1 over S2 if DpðxÞ40. As long as p1,p2o1, o is
always greater than 0. Thus, the condition DpðxÞ40 only depends
on the values of w and c, which are independent of x. Further-
more, DpðxÞ adds no additional equilibria to the replicator
equation given by Eq. (2), so that the only equilibria of the
replicator equation are given by x¼0 and 1. If wc40, x¼1 is
stable and S1 dominates S2. If wco0, x¼0 is stable and S2

dominates S1. Let us suppose that S1 is more cooperative than
S2, i.e. s14s2. Then, c is also always greater than 0, and the
condition DpðxÞ40 reduces to w40. If do ðb�cÞ=2 selection
favors the more cooperative strategy S1 if s4sc and the less
cooperative strategy if sosc , where

sc ¼
cþd

b�d
¼

1þd=c

ðc=bÞ�1
�d=c

ð9Þ

is the critical degree of assortment. sc is a monotonically
increasing function of the cost of participation d, as we illustrate
in Fig. 2 with some numerical examples. If d4 ðb�cÞ=2 selection
always favors the less cooperative strategy S2 irrespective of the
degree of assortment and upstream reciprocity is doomed to
extinction.
4. Upstream and network reciprocity

As a second model, we consider the evolution of upstream
reciprocity when network reciprocity is also at work. Individuals
are embedded in a social network of contacts represented by a
simple graph. Interaction and competition are constrained to
nearest neighbors in the network. The link between upstream
and network reciprocity has been investigated analytically by
Nowak and Roch (2007) for the case of the one-dimensional array
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and numerically by Iwagami and Masuda (2010) for the cases of
regular lattices, random graphs and scale-free networks. Both
studies report a synergistic interaction between upstream and
network reciprocity. In the following, we show that participation
costs can suppress such synergy.
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(see Fig. 3).
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Each curve divides the plane into two regions. Above the curve, GCs win against
4.1. Analytical results

Let us first consider the analytical treatment reported by
Nowak and Roch (2007). Strategies are still denoted by S(p, q),
where p is the probability of passing on and q the probability of
initiating altruistic acts. Strategists with p¼0 do not implement
upstream reciprocity, since they do not pass chains of gratitude.
In particular, S(0,0) gives classical defectors (CDs) and S(0,1) gives
classical cooperators (CCs). In contrast, when p40 we obtain
strategies such as S(p, 0), passers-on (POs), that pass but not
initiate and S(p, 1), generous cooperators (GCs), that both pass
and initiate. Players are arranged in a one-dimensional array and
‘imitation updating’ (Ohtsuki et al., 2006) is used as evolutionary
dynamics. For this evolutionary dynamics, a player is randomly
chosen from the entire population. Then it will either keep its
strategy or imitate one of its neighbors’ strategies proportional to
fitness.

As shown by Nowak and Roch (2007) for the case of costless
participation, GCs win against both CDs and CCs when

b=c4hðpÞ ¼
8þ2pþ8

ffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

p

3þ4pþ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

p : ð10Þ

The function h is monotonically decreasing with the probability to
pass p, so that the larger the probability of passing p the lower the
benefit-to-cost ratio b/c necessary for GCs to prevail in the
population. With p¼1, h(p) attains its minimum, h(1)¼10/7.
The condition b=c410=7 is less stringent than the condition
b=c44, obtained when only network reciprocity is at work
(Ohtsuki and Nowak, 2006; Ohtsuki et al., 2006). Thus, upstream
reciprocity makes the evolution of cooperation by network
reciprocity easier when participation is costless.

Let us consider a population comprising GCs and CDs arranged
in a one-dimensional array, with players indexed with integer
values, so that vAf0,�1,�2, . . .g play CD and vAf1,2, . . .g play GC
(Fig. 3). Whether the GC–CD boundary will move to the left or to
the right as a result of the evolutionary dynamics depends only on
the fitnesses of players �1, 0, 1 and 2, which depend in turn on
the number of games played by those players. Fig. 4 plots the
number of participations in a game by players �1, 0, 1 and 2 as
functions of the probability p that a GC passes on a chain of
gratitude (see Appendix A for the mathematical expressions). As in
the model with assortment of encounters presented in Section 3,
interaction rates are non-uniform such that more cooperative
players tend to play more games than less cooperative players.
The number of games played by an individual also depends on its
position in the array. Thus, GCs farther from the GC–CD boundary
interact more often than GCs closer to the boundary. Player
0 interacts exclusively as recipient, receiving but not passing
random walks arriving from player 1. Players �1,�2,y do not
Fig. 3. Classical defectors (CDs) and generous cooperators (GCs) arranged in a one-

dimensional array.

CDs; below the curve, GCs lose against CDs. For a fixed cost of cooperation c,

increasing the cost of participation d reduces the region of dominance of GCs.
interact at all and can actually be considered as loners that do not
take part in any social interaction (Hauert et al., 2002).

Since interaction rates are non-uniform, evolutionary dynamics
are modified when participation in the game has a cost d. The new
results are obtained by making the replacements b-b�d and
c-cþd. The condition for the establishment of altruism thus
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changes to ðb�dÞ=ðcþdÞ4hðpÞ or, equivalently, to

b=c4d=cþð1þd=cÞ � hðpÞ ð11Þ

with h(p) as given in Eq. (10). Eq. (11) is harder to fulfill than
Eq. (10) for any d40. This is shown in Fig. 5 for some numerical
examples.

4.1.1. Simulation results

We now turn to the interaction between upstream and net-
work reciprocity in less simple graph-structured populations.
Such investigation has been recently pioneered by Iwagami and
Masuda (2010), who in addition to confirm the synergistic
interaction between upstream and network reciprocity, also point
out the importance of heterogeneous networks as amplifiers of
cooperation when fitness is given by the accumulated payoff and
participation in the game is costless. Here, we study the cases
when participation has some non-negligible cost.

We use different types of networks as population structures:
rings (one-dimensional lattices), random regular networks, and
Barabási–Albert scale-free networks (Barabási and Albert, 1999)
(see Appendix B for more details on the construction of the
random and scale-free networks). All the networks are of size
n¼104. We use rings of degree k¼2 and 8, regular random
networks with k¼8, and scale-free networks of average degree
/kS¼ 8. For the sake of comparison, we follow the setup
considered by Iwagami and Masuda (2010) and described in the
following. A simulation step comprises two phases. During the
first phase each player in turn attempts to start an independent
random walk. Players are assigned a payoff as a result of the
interactions with neighboring players along the trajectories of the
random walks. In the second phase, when all the random walks
have ended, individuals update their strategies according to the
obtained payoff. The evolutionary dynamics is the one suggested
by Iwagami and Masuda (2010): nu out of the n players are
randomly selected each generation for strategy updating. They
synchronously adopt the strategy of the individual with the
highest payoff in their neighborhoods (including themselves).
We consider the four strategies previously introduced: CDs, CCs,
POs and GCs. For the strategies based on upstream reciprocity
(POs and GCs) we set p¼0.8, and nu¼200 for the evolutionary
dynamics. Without loss of generality, we assume c¼1. We set the
maximum number of rounds to 50 000 for the scale-free net-
works, regular random graphs and the rings with k¼2, and to
150 000 rounds for the rings with k¼8.

We found no qualitative differences in the results when
we run simulations for other values of nu (20 and 2000),
p (0.7 and 0.9) and /kS (6 and 14). For reasons of space, we
stick to the baseline model and show the results only for nu¼200,
p¼0.8 and /kS¼ 8.

4.1.2. Populations comprising GCs and CDs

Before considering the competition among the four strategies,
we first investigate the outcome of the evolutionary dynamics
when only GCs and CDs are present in the population, for random
initial configurations of 50% GCs. We found essentially the same
results as those reported by Iwagami and Masuda (2010), namely,
that network reciprocity can favor GCs over CDs, that degree-
heterogeneous topologies are strong amplifiers of cooperation
under both upstream and network reciprocity, and that CDs
prevail in random regular structures, presumably because of the
low clustering coefficient of this topology. Results are, however,
dependent on the participation cost d. Fig. 6 shows the final
fraction of GCs for different values of the benefit b and the
participation cost d. The results for regular random graphs are
not shown as defection always prevails in these structures for the
region of parameters we considered. For the other population
topologies, the higher the participation cost, the more difficult for
gratitude-related altruists to be selected against pure defectors. In
particular, GCs completely vanish if d4 ðb�cÞ=2 for all population
structures. If do ðb�cÞ=2 the detrimental effect of participation
costs in the evolution of upstream reciprocity is far less pro-
nounced for scale-free networks than for the other population
topologies.

The exact threshold value of the participation cost d above
which CDs prevail can be approximated by making use of Eq. (11).
In this case, it is reasonable to expect that h depends not only on
p, but also on the network topology, the updating rule and the
population size. In the absence of theoretical results, h can be
numerically approximated by the value of the critical benefit-to-
cost ratio when d¼0, which can be found by linearly interpolating
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the average final fraction of GCs resulting from the simulations.
Following this procedure we obtained h¼2.95 for the rings with
k¼2, h¼4.01 for the rings with k¼8, and h¼1.17 for the scale-
free networks. We show the approximated critical values of d for
each network with dashed lines in Fig. 6.
4.1.3. Populations comprising CDs, CCs, POs and GCs

Fig. 7 shows the final fraction of the four strategies for
different networks when fitness is given by the accumulated
payoff and participation is free or when it has a cost d¼1. The
costless case is included for the sake of comparison and com-
pleteness, since the results are essentially the same as those
found by Iwagami and Masuda (2010).

When participation is free, GCs are able to invade all popula-
tion structures for sufficiently high values of b, except for the
regular random graphs, in which CDs dominate for all the tested
values of b. In the rings, the steady state makes a transition
between a population dominated by CDs or POs to a population
dominated by GCs at a given threshold value of b. Such threshold
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Fig. 7. Final fractions of CDs, CCs, POs and GCs when the four strategies are ini
is higher for k¼8 than for k¼2. Scale-free networks are even
more favorable to cooperation in general. In this case neither CDs
nor POs go to extinction for all values of b. There is a coexistence
of CCs and GCs, with the fraction of GCs increasing with b. With
the addition of a participation cost d¼1 the point at which GCs
statistically dominate the outcome of the simulations establishes
at sensibly higher values of b. Additionally, CDs can now prevail in
the scale-free networks for very low values of b.
5. Discussion

The main conclusion of Nowak and Roch (2007) is that ‘upstream
reciprocity alone does not select for cooperation, but can promote
cooperation if it is linked to a mechanism for the evolution of
cooperation’, that is, a mechanism providing positive assortment of
strategies. Such promotion seems to be a consequence of specific
modeling choices, particularly the sampling of donor–recipient pairs
along random walks in the population of individuals, and the fact
that such sampling leads to non-uniform interaction rates in which
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tially present in the population. We set c¼1 and, for POs and GCs, p¼0.8.
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more cooperative strategies engage in more rounds of the game per
generation than less cooperative strategies. Hence, in Nowak and
Roch’s model, upstream reciprocity plays a role analogous to that of
degree-heterogeneity in network reciprocity. In this sense upstream
reciprocity does not constitute an independent mechanism for the
evolution of cooperation, but can further enhance the levels of
cooperation by inducing non-uniform interaction rates. However,
while in evolutionary games on networks such non-uniformity in
interaction rates is strategy-independent (e.g. some individuals
interact more because they are placed in the hubs of a network of
contacts), in Nowak and Roch (2007) it is strategy-dependent, which
implies that more cooperative players end up interacting more
times than less cooperative ones.

In this paper, we investigated one way of controlling such non-
uniformity in the interaction rates of the players: the introduction
of participation costs. Participation costs implement the idea that
there is often no free lunch when it comes to social interaction.
Even players in the role of recipients have to be available to eager
donors in order to get the benefit of altruistic acts directed towards
them, and this availability may have a cost. We found that partici-
pation costs can have an important effect on the the evolution of
upstream reciprocity. Gratitude-related altruism can be unbeatable
with respect to defection when participation is free and there is
some degree of assortment of strategies, provided for instance by
population structure. However, defection can turn out to be the
dominant strategy when participation is expensive. Specifically,
the higher the participation cost, the higher the degree of assort-
ment and/or the benefit-to-cost ratio needed for upstream reci-
procity to evolve. Finally, when participation is so costly that
d4 ðb�cÞ=2, the evolution of upstream reciprocity is totally sup-
pressed. Similar results can be readily obtained if we consider
direct reciprocity instead of network reciprocity as the mechanism
responsible for building up assortment (see Appendix C).

These results bear resemblance to those obtained by Masuda
(2007), who found that participation costs influence the outcome of
evolutionary games on degree-heterogeneous networks. In the case
studied in this paper, the evolutionary dynamics under Nowak and
Roch’s model are found to be dependent on the participation cost
not only for heterogeneous graphs, but also for any population
structure, including well-mixed populations. In the case of net-
worked games of upstream reciprocity, and contrastingly to the
results obtained by Masuda (2007) regarding participation costs in
network reciprocity alone, heterogeneous networks are more suc-
cessful than homogeneous networks at promoting upstream reci-
procity. Furthermore, scale-free networks were found to promote
gratitude-based cooperation for practically all of the region out of
the costly regime, i.e. for do ðb�cÞ=2. These highly heterogeneous
networks greatly amplify even small positive payoffs resulting from
passing along chains of gratitude.

A different but related way to control for the non-uniformity of
interaction rates is by using the average payoff instead of the
accumulated payoff when defining fitness (Santos and Pacheco,
2006; Tomassini et al., 2007). In this case, the fitness of player v is
given by the accumulated payoff divided by the total number of
interactions, that is

pv ¼ ðN
in
v b�Nout

v cÞ=Nv: ð12Þ

Selection based on the average payoff can be justified when
evolutionary dynamics emerge from imitation processes, where
it is reasonable to think of individuals looking not at the
accumulated payoff over many interactions but at typical or
average outcomes of social interactions as the appropriate guide-
lines when targeting cultural models for imitation. It is easy to see
that upstream reciprocity cannot evolve in Nowak and Roch’s
model when selection is based on the average payoff. Indeed,
defectors act only as recipients in this model. Their average payoff
(when interacting with a cooperative strategy that initiates and
passes chains of gratitude) is thus always equal to b, which is the
maximum possible value of Eq. (12). This fact is the direct result
of two additional features of Nowak and Roch’s model. First,
participation in a game as a donor (i.e. initiating or passing chains
of altruistic acts) is not compulsory but voluntary, and players can
refrain from taking part in a game. Second, once a player has
entered the game as donor it never refuses to help the recipient.
Thus, defection is never actually experienced by recipients and
only helping acts are passed and reciprocated. Hence, defection is
interpreted as the refusal to participate in a game. All of this
makes defection the obvious outcome of selection when fitness is
given by the average payoff. A slightly different definition of the
average payoff when the upstream reciprocity game is played on
networks is to normalize the accumulated payoff by the degree of
each player instead of by the total number of participations in a
game (Iwagami and Masuda, 2010). The evolution of upstream
reciprocity is also expected to be hampered when selection is
based on this alternative definition of the average payoff.

We note that interaction rates are uniform in other models of
upstream or generalized reciprocity (Boyd and Richerson, 1989;
Pfeiffer et al., 2005; Hamilton and Taborsky, 2005; Rankin and
Taborsky, 2009; Sigmund, 2010, p. 82). Thus, the evolutionary
dynamics in these models are invariant with respect to the
introduction of participation costs (or to the replacement of the
accumulated payoff by the average payoff). This means that the
invasion conditions and the effective critical cost-to-benefit ratios
derived in these papers are, in contrast to those derived by Nowak
and Roch (2007) and Iwagami and Masuda (2010), unaffected by
the replacements b-b�d and c-cþd. Additionally, all of these
models assume that participation is compulsory and, when
considering Donation games that participation as a donor does
not equate with Donation. Donors can refrain from giving and
recipients can experience defection. Strategists implementing
upstream or generalized reciprocity can thus base their actions
on whether they have been helped or have been refused help in
the past. This last scenario is missing in the model of upstream
reciprocity investigated by Nowak and Roch (2007) and Iwagami
and Masuda (2010), where only altruistic acts can be passed and
reciprocated. We think that this is a fundamental feature that
cannot be omitted in models of reciprocity. When participation is
compulsory and acts of defection are allowed to be passed and
reciprocated, upstream reciprocity seems to be harder to explain
from an evolutionary perspective, even in structured populations.
This has already been shown for a model of non-random encoun-
ters, where it was found that generalized reciprocity is not
evolutionarily stable against both unconditional cooperators and
unconditional defectors under a Prisoner’s dilemma equivalent to
the Donation game (Rankin and Taborsky, 2009).
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Appendix A. Upstream and spatial reciprocity: number of
participations for GCs and CDs

Consider a population comprising GCs and CDs, arranged in a
one-dimensional array. Players are indexed with integer values,
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so that players vAf0,�1,�2, . . .g play CD and players vAf1,2, . . .g
play GC. The number of participations in the game can be found
by making the replacements b-1 and c-�1 in the expression for
the fitness of player v (Eq. (8) in the supplementary material of
Nowak and Roch (2007)). By plugging the values p0¼q0¼0, p1¼p

and q1¼1 in the formulas given by Nowak and Roch (2007), we
obtain the following values for Nv:

N2 ¼ 1þ
ð1þpÞf4HþðH�pÞ½Hð2þpÞþ2p�g

ðH�pÞ½4H�p2ð2þHÞ�
,

N1 ¼ 1þ
ð1þpÞ½pðH�pÞþ2H�

ðH�pÞð2H�p2Þ
,

N0 ¼
1

2
þ

p½pðH�pÞþ2H�

2ðH�pÞð2H�p2Þ
,

N�1 ¼ 0,

where

H¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

q
:

Appendix B. Network models

Regular random networks. In these networks every node has the
same degree k, but its neighbors are randomly scattered in the
graph. To build the networks we start from a one-dimensional
lattice with degree k and apply the following algorithm, proposed
by Szabó et al. (2004). A randomly selected link AB is removed
from the network. A new link is then created going from B, which
has lost one link, to a randomly selected node C, which has now
one excess link. To maintain the same degree in C one of its edges,
for example CD, is deleted. This process of creating a random link
starting from the new less-connected node and removing an edge
starting from the new more-connected node is repeated 2kn

times to assure that the neighborhood is completely random. At
this point a link between the less-connected player and the first
player A, which also lacked one link, is created.

Scale-free networks. Among the several available models for
constructing scale-free networks (Newman, 2003), we use the one
by Barabási and Albert (1999). Barabási–Albert networks are
grown starting from a small clique of m0 nodes. At each succes-
sive time-step a new node is added such that its mrm0 edges
link it to m nodes already present in the graph. It is assumed that
the probability p that a new node will be connected to node i

depends on the current degree ki of the latter. This is called the
preferential attachment rule. The probability p (ki) of node i to be
chosen is given by pðkiÞ ¼ ki=

P
jkj, where the sum is over all

nodes already in the graph. The model evolves into a network
with power-law probability distribution for the vertex degree
PðkÞ � k�g, with g� 3 and /kS¼ 2m. For the simulations, we used
m0 ¼m¼/kS=2.
Appendix C. Upstream and direct reciprocity

In addition to spatial reciprocity, Nowak and Roch (2007) also
considered allowing some level of direct reciprocity in the
strategies of players as means of introducing assortment of
strategies and pave the way for the evolution of upstream
reciprocity. Strategies are now given by S(p, q, r), where r is the
probability that help is immediately returned to the donor.
Recipients reciprocate to the donor with probability r and help
a random player with probability (1�r)p. The cooperativity si of
strategy Si is now given by si ¼ qi=½ð1�riÞð1�piÞ�.
Consider the competition between strategies S1 ¼ Sðp1,q1,r1Þ

and S2 ¼ Sðp2,q2,r2Þ. If fitness is given by the accumulated payoff
with d¼0, then the fitness difference is given by

DpðxÞ :¼ p1ðxÞ�p2ðxÞ ¼ ðN
in
1 �Nin

2 Þb�ðN
out
1 �Nout

2 Þc:

According to Nowak and Roch (2007), such fitness difference is
given by

DpðxÞ ¼ ab=g

with

a¼ q1ð1�r2Þð1�p2Þ�q2ð1�r1Þð1�p1Þ,

b¼ ðbr2�cÞð1�r1Þ�xðb�cÞðr2�r1Þ,

g¼ ½xð1�p1Þð1�r1ðp2ð1�r2Þþr2ÞÞþð1�xÞ

�ð1�p2Þð1�r2ðp1ð1�r1Þþr1ÞÞ� � ð1�r1Þð1�r2Þ:

We can easily derive an expression for the difference in the
number of times players of the two types have interacted
NðxÞ :¼ N1ðxÞ�N2ðxÞ, by making b-1 and c-�1 in the expressions
above. We thus obtain

NðxÞ ¼ a ~b=g,

where

~b ¼ ð1þr2Þð1�r1Þ�2xðr2�r1Þ:

As long as p1,p2o0, g is always greater than zero and as long as
0or1,r2o1, ~b is always greater than zero. Thus, the condition
NðxÞ40 reduces to a40. We conclude that s14s2, with
si ¼ qi=½ð1�riÞð1�piÞ�, implies N14N2.

Results are similar to those obtained with the model of non-
random encounters analyzed in Section 3 of the present paper. If
s14s2, then N14N2. Interaction rates are thus non-uniform and
strategy-dependent. With non-zero participation costs the results
presented by Nowak and Roch (2007) are valid up to the replace-
ments b-b�d and c-cþd. If d4 ðb�cÞ=2, selection always favors
the strategy with lower cooperativity. If do ðb�cÞ=2, the critical ratio
rc defining phase transitions in the evolutionary dynamics is given by
Eq. (9). Thus, for increasing values of the participation cost d, larger
values of r are required for more cooperative strategies to win over
less cooperative strategies and for upstream reciprocity to hitch-hike
on direct reciprocity.
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