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2E-mail: jorge.pena@unil.ch

Received July 8, 2011

Accepted October 13, 2011

Data Archived: Dryad: doi:10.5061/dryad.rb7g719t

Public goods games are models of social dilemmas where cooperators pay a cost for the production of a public good while

defectors free ride on the contributions of cooperators. In the traditional framework of evolutionary game theory, the payoffs of

cooperators and defectors result from interactions in groups formed by binomial sampling from an infinite population. Despite

empirical evidence showing that group-size distributions in nature are highly heterogeneous, most models of social evolution

assume that the group size is constant. In this article, I remove this assumption and explore the effects of having random group

sizes on the evolutionary dynamics of public goods games. By a straightforward application of Jensen’s inequality, I show that

the outcome of general nonlinear public goods games depends not only on the average group size but also on the variance of

the group-size distribution. This general result is illustrated with two nonlinear public goods games (the public goods game with

discounting or synergy and the N-person volunteer’s dilemma) and three different group-size distributions (Poisson, geometric,

and Waring). The results suggest that failing to acknowledge the natural variation of group sizes can lead to an underestimation

of the actual level of cooperation exhibited in evolving populations.
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Social dilemmas are situations in which there is a conflict between

individual and collective interests. In game theory terms, social

dilemmas are defined as games with at least one Pareto ineffi-

cient Nash equilibrium (Kollock 1998; Archetti and Scheuring, in

press): an alternative outcome making at least one player better

off without reducing any other player’s payoff is possible, but no

player has the incentive to change their behavior. Such tension

between the individual and the collective interest is encountered

at all levels of biological organization, from the production of

enzymes in microorganisms (Turner and Chao 1999; Gore et al.

2009) to predator inspection (Pitcher 1991), sentinel behavior

(Clutton-Brock et al. 1999), and cooperative hunting (Packer and

Ruttan 1988) in social vertebrates. Pollution, human overpopula-

tion, overexploitation of fisheries (Hardin 1968), the use of public

transportation (Van Vugt et al. 1996), and the production of open-

source software (Hippel and Krogh 2003) are typical examples

of the kind of social dilemmas faced by contemporary human

societies.

Many social dilemmas are related to the production of pub-

lic goods, defined as common resources that are simultaneously

nonexcludable (no individual can be excluded from its con-

sumption) and nonrivalrous (one individual’s use of the public

good does not diminish its availability to another individual)

(Samuelson 1954; Pindyck and Rubinfeld 2001). Public goods

games (PGGs) are simple models of public goods dilemmas, used

by both experimental economists (Kagel and Roth 1995) and

theoreticians (Hamburger 1973; Fox and Guyer 1978; Sigmund

2010). In general, a PGG can be described by a benefit function

B(i, N ) and a cost function C(i, N ), where i is the number of

cooperators (Cs) in a group of size N (Archetti and Scheuring,

in press). Only Cs pay the cost C(i, N ) whereas both Cs and

defectors (Ds) get the benefit B(i, N ). This leads to payoffs for

Ds and Cs being, respectively, given by PD(i, N ) = B(i, N ) and

PC (i, N ) = B(i, N ) − C(i, N ).

By far, the most well-known PGG is the N-person Prisoner’s

Dilemma, hereafter NPD (Hamburger 1973). The NPD involves
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a group of N individuals where Cs contribute a cost c > 0 to the

public good, whereas Ds contribute nothing. All contributions are

added together, multiplied by an enhancement factor 1 < r < N ,

and then shared among all the individuals of the group. This

gives B(i, N ) = rci/N for the benefit function and C(i, N ) = c

for the cost function. The NPD is the archetypal example of a

social dilemma because its only Nash equilibrium (all players

defect) is evidently Pareto inefficient: everybody ends up getting

nothing, but if everybody had cooperated, each individual would

have obtained c(r − 1) > 0. Moreover, defection is dominant,

so that each individual is better off defecting no matter what

their coplayers do, that is, PD(i, N ) > PC (i + 1, N ). The fact

that defection is dominant prevents cooperation from evolving

when groups form randomly (Nunney 1985). (Note, however,

that if r > N cooperation dominates defection, there is no social

dilemma, and cooperation evolves).

A great deal of effort in evolutionary biology has been

devoted to the study of mechanisms allowing for the evo-

lution of cooperation in the NPD, such as kin selection

(Hamilton 1964; Grafen 1985; Frank 1998; Grafen 2009) and reci-

procity (Trivers 1971; Axelrod and Hamilton 1981; Nowak and

Sigmund 2005), which can all be understood as different ways

of creating and maintaining positive assortment between Cs

(Lehmann et al. 2006; Fletcher and Doebeli 2009). Voluntary

participation (Hauert et al. 2002), punishment of noncontributors

(Boyd and Richerson 1992) and rewards to contributors (Hauert

2010) have also been proposed as alternative mechanisms to pro-

mote cooperation in the NPD.

Despite its theoretical importance, it is clear that the NPD is

only a very specific case of PGG, characterized by a linear benefit

function and by the fact that defection is the dominant strategy.

Other social dilemmas may depart from these assumptions, as it

has been well understood in the social sciences (Schelling 1978;

Taylor and Ward 1982; Hirshleifer 1983; Kollock 1998) and rec-

ognized in theoretical evolutionary biology (Maynard Smith 1965;

Charnov and Krebs 1975; Cohen and Eshel 1976; Matessi and

Jayakar 1976; Boyd and Richerson 1988; Dugatkin 1990; Motro

1991) for decades. Recently, several works in evolutionary game

theory have focused on PGGs with nonlinear payoff functions,

bringing to the fore alternatives to the NPD for modeling social

dilemmas (Bach et al. 2006; Hauert et al. 2006b; Zheng et al.

2007; Pacheco et al. 2009; Souza et al. 2009; Archetti 2009a,b;

Archetti and Scheuring 2011, in press). The most important result

from this heterogeneous collection of works is that removing the

assumptions of dominant defection and linearity on which the

NPD is based has important consequences on the resulting evo-

lutionary dynamics. Stable and unstable interior fixed points may

appear in the replicator dynamics of nonlinear PGGs, leading to

the coexistence of Cs and Ds or to bistability between coopera-

tive and defective equilibria. In these cases, cooperation can be

maintained without the need of invoking reciprocity, punishment,

voluntary participation, rewards, or any of the mechanisms gen-

erally proposed to generate assortment in the NPD (Archetti and

Scheuring, in press).

For reasons of parsimony, it is common to consider the group

size N as constant when investigating the evolutionary dynam-

ics of PGGs. Natural and social systems, however, often exhibit

high levels of group-size heterogeneity. Indeed, the group-size

distributions of several species, including social amoeba (Fortu-

nato et al. 2003), tuna fish and sardinellas (Bonabeau and Dagorn

1995), buffaloes (Sinclair 1977), antelopes (Wirtz and Lörscher

1983), bisons (Lott and Minta 1983), lions (Schaller 1972), wolves

(Rodman 1981), killer whales (Baird and Dill 1996), and humans

(Zipf 1949; James 1953; Newman 2001) have been reported to be

heavily skewed, and in many cases well approximated by power-

law distributions (Bonabeau and Dagorn 1995; Bonabeau et al.

1999; Sjöberg et al. 2000; Newman 2001; Niwa 2003). Hetero-

geneous group-size distributions are also expected to arise from

simple stochastic models of aggregation and grouping (Cohen

1971; Okubo 1986; Bonabeau et al. 1999; Duerr and Dietz 2000;

Niwa 2003).

In this article, I study the effects of introducing variable group

sizes in the replicator dynamics of PGGs. I do so by assuming

that group size is a random variable with a prescribed probability

distribution. In contrast to other models of social evolution featur-

ing diverse group sizes, the model presented here does not involve

(1) changes in group size caused by changes in behavior (Lehmann

et al. 2006), (2) individual group size preferences (Avilés 2002;

van Veelen et al. 2010; Powers et al. 2011), (3) time-varying

group-size distributions with fluctuating mean values (Eshel 1977;

Szathmáry 1993; Hauert et al. 2002, 2006a, 2008; Mathew and

Boyd 2009; Parvinen 2010) nor (4) network-structured popula-

tions (Santos et al. 2008; Santos and Pacheco 2011). Rather, it

is based on the following assumptions: (1) group-size distribu-

tions are exogenously determined, (2) Cs and Ds have the same

tendency to aggregate (no particular preference for a given group

size), (3) group-size distributions are static, and (4) the popu-

lation is well mixed. The motivation behind these simpler as-

sumptions is to explore to which extent the sole fact of having

diverse but static group-size distributions can affect the evolu-

tionary dynamics of PGGs in the absence of assortment of strate-

gies resulting from differential grouping tendencies or population

structure.

With the above-mentioned assumptions, the general model

presented in this article is closely related to the models of

intrademic group selection by Cohen and Eshel (1976) and

Matessi and Jayakar (1976), who also studied evolutionary PGGs

with constant and random group sizes. However, my approach
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contrasts with these works in various respects. First, I make ex-

plicit use of a general result in probability theory (Jensen’s in-

equality) for investigating when and how the evolutionary dy-

namics under random group sizes are expected to be different

from those under constant group sizes. Second, I consider group-

size distributions going beyond the Poisson distribution used by

Cohen and Eshel (1976). Finally, I illustrate the general results

with different social dilemmas, namely the public goods with

discounting or synergy (PGGDS) (Hauert et al. 2006b) and the

N-person volunteer’s dilemma (NVD) (Diekmann 1985; Archetti,

2009a,b).

My model is also related to recent work by Brännström et al.

(2011), who studied the consequences of fluctuating group sizes

for the evolution of cooperation in continuous PGGs. The au-

thors analyzed general classes of PGGs with payoff functions

that do not explicitly depend on group size and derived general

conditions for group-size diversity to promote/hinder coopera-

tion in the framework of adaptive dynamics (Metz et al. 1996).

In this work, I focus instead on the effects of group-size diver-

sity on PGGs with payoff functions that explicitly depend on

group size, in the framework of the replicator dynamics for two

discrete strategies: Ds that contribute c = 0 and Cs that con-

tribute c > 0. This choice allows direct comparison with recent

works on evolutionary PGGs that consider the same setup (repli-

cator dynamics of Cs and Ds), but assume that the group size

is constant (Hauert et al. 2006b; Zheng et al. 2007; Pacheco

et al. 2009; Souza et al. 2009; Archetti, 2009a,b; Archetti and

Scheuring 2011).

The Model
Consider a very large and well-mixed population consisting of a

fraction x of Cs and 1 − x of Ds, where groups of N individuals

are formed randomly by binomial sampling. For now, assume that

the group-size N is constant, so that N = n with probability equal

to one. Then, the probability that a given individual finds itself

in a group where j of the other n − 1 individuals are Cs is given

by

(
n − 1

j

)
x j (1 − x)n−1− j .

In each group with j other Cs, Cs receive a payoff PC ( j + 1, n)

and Ds a payoff PD( j, n). Therefore, the average payoff of a C

and a D are given, respectively, by

fC (x, n) =
n−1∑
j=0

(
n − 1

j

)
x j (1 − x)n−1− j PC ( j + 1, n),

and

fD(x, n) =
n−1∑
j=0

(
n − 1

j

)
x j (1 − x)n−1− j PD( j, n).

In the framework of evolutionary game theory, the change in fre-

quency of cooperators can be described by the replicator dynamics

(Taylor and Jonker 1978; Hofbauer and Sigmund 1998)

ẋ = x(1 − x) f (x, n), (1)

where ẋ = dx/dt and

f (x, n) = fC (x, n) − fD(x, n).

As mentioned above, the analysis of equation (1) for different

PGGs has been extensively carried out for the case of constant

group sizes (Boyd and Richerson 1988; Dugatkin 1990; Hauert

et al. 2006b; Zheng et al. 2007; Pacheco et al. 2009; Souza et al.

2009; Archetti, 2009a,b; Archetti and Scheuring 2011).

To introduce group-size diversity, suppose now that N is

no longer a constant but a random variable with support n ∈
{nmin, nmin + 1, . . . , nmax} and probability mass function pn =
Pr(N = n), so that

∑nmax
nmin

pn = 1. The mean value of N is

given by μN = E[N ] = ∑
n pnn and its variance by σ2

N . As-

sume that nmin ≥ 2 as to exclude “groups” of size one where

by definition there is no social dilemma. Finally, denote by

E[g(N )] = ∑
n pn g(n) the expected value of the function g(N ).

Then, by the law of total probability, the average payoff of a C

and a D can be written as

FC (x, N ) =
∑

n

qn fC (x, n),

and

FD(x, N ) =
∑

n

qn fD(x, n),

where qn = npn/μN is the probability that an individual joins a

group of size n. The replicator dynamics becomes

ẋ = x(1 − x)F(x, N ), (2)

where

F(x, N ) = FC (x, N ) − FD(x, N ) =
∑

n

qn f (x, n)

= 1

μN
E[N f (x, N )]. (3)

Notice that the standard case where group size is constant

is recovered from equation (2) by assuming that N is distributed

according to the degenerate distribution, that is, a distribution

with probability mass function pn = δ(n,μN ), where δ(x, y)

is the Kronecker delta function, so that δ(x, y) = 1 if x = y
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and δ(x, y) = 0 otherwise. In this case, the replicator dynamics

reduces to

ẋ = x(1 − x) f (x,μN ). (4)

Let us now assume that N is distributed according to a non-

degenerate distribution, so that σ2
N > 0. Then, it is clear from

equations (2), (3), and (4) that, for a given x , group-size diver-

sity will lead to a dynamical scenario which is more favorable

to cooperation than the one obtained if N is constant whenever

F(x, N ) > f (x,μN ). This last expression leads to

E[N f (x, N )] > μN f (x,μN ). (5)

I now make use of Jensen’s inequality (see Jensen [1906]

for the original paper, Gillespie [1977] for a classic application

to evolutionary biology, and Ruel and Ayres [1999] for a review

and applications to ecology), a well-established result in prob-

ability theory stating that the average of a nonlinear function

E[g(X )] is different from the function evaluated at the average

g(E [X ]). In particular, E[g(X )] > g(E [X ]) if g(x) is strictly con-

vex (d2g(x)/dx2 > 0) and E[g(X )] < g(E [X ]) if g(x) is strictly

concave (d2g(x)/dx2 < 0). By a straightforward application of

Jensen’s inequality, the condition given by equation (5) is true if

h(x, n) ≡ n f (x, n)

is strictly convex in n, that is, if ∂2h/∂n2 > 0.

From this, it is clear that the NPD is essentially unaffected

by group-size diversity. Indeed, it can be easily shown that for

this game h(x, n) reduces to c(r − n), which is a linear function

of n. Thus, F(x, N ) = f (x,μN ) so that the replicator dynamics

of the NPD is invariant with respect to changes of the group-size

distribution preserving its average value.

A different picture emerges in the case of nonlinear PGGs,

because nonlinearities in payoff functions translate into func-

tions h that are nonlinear in n and, by Jensen’s inequality, into

F(x, N ) �= f (x,μN ). In particular, the more diverse the group-

size distribution and the more nonlinear the function h, the larger

the deviation of the gradient of selection of the replicator dy-

namics from its mean-value approximation F(x, N ) ≈ f (x,μN ).

Indeed, we can write (see Appendix 1)

F(x, N ) ≈ f (x,μN )︸ ︷︷ ︸
mean-value approximation

+1

2

∂2h(x,μN )

∂n2︸ ︷︷ ︸
nonlinearity

× σ2
N /μN︸ ︷︷ ︸

group-size diversity

.

(6)

Equation (6) neatly shows the combined effects of nonlinearity

and group-size diversity on the replicator dynamics and further

clarifies the predictions of Jensen’s inequality: for a given x ,

group-size diversity favors cooperation if and only if h is strictly

convex in n (∂2h(x,μN )/∂n2 > 0). Whenever h is nonlinear, so

that ∂2h(x,μN )/∂n2 �= 0, the promotion or hindering of coopera-

tion is more important the larger the nonlinearity of h (as measured

by |∂2h(x,μN )/∂n2|) and the larger the diversity of the group-size

distribution (as measured by the variance-to-mean ratio σ2
N /μN ).

In the following, I illustrate this general result with two partic-

ular cases of nonlinear PGGs: PGGDS and the NVD. I explicitly

model the group-size distributions by making use of (truncated)

Poisson, geometric, and Waring distributions, which greatly differ

in their variance-to-mean ratios (see Fig. 1). These distributions

frequently arise as the result of simple aggregation processes

(Coleman and James 1961; Cohen 1971; Okubo 1986; Duerr and

Dietz 2000) and are good models of animal group-size distribu-

tions. The Waring distribution (Irwin 1968) exhibits power-law

behavior for large values of the random variable (i.e., if N is a

Waring variate, Pr(N = n) ∝ n−α for large values of n), hence it

can be used to model grouping based on preferential attachment

(Barabási and Albert 1999), whereby larger groups are preferen-

tially chosen by joining individuals. A mathematical description

of these probability distributions is given in Appendix 2 .

PUBLIC GOODS GAME WITH DISCOUNTING OR

SYNERGY (PGGDS)

In the PGGDS (Hauert et al. 2006b), the first C in the group

contributes a value b to produce a public good, the second C

contributes wb and so on, to the i th C which contributes wi−1b.

The public good is then shared equally among the members of the

group. The benefit function is thus given by

B(i, n) = b(1 + w + w2 + · · · + wi−1)

n
= b(1 − wi )

n(1 − w)
,

whereas the cost function is given by C(i, n) = c (each C pays

a fixed cost c). For w = 1, the NPD is recovered as a special

case when b = rc < nc. If 0 < w < 1, the benefit function is

decelerating (benefits are discounted) whereas if w > 1, it is

accelerating (benefits are synergistically enhanced).

With these definitions we obtain after little algebra:

f (x, n) = b

n
(1 − x + wx)n−1 − c, (7)

and

F(x, N ) = b

μN
E[(1 − x + wx)N−1] − c. (8)

Let us denote by γ = c/b the cost-to-benefit ratio, and define

γ1 = 1/μN and

γ2 = E[wN−1]/μN . (9)

Then, as shown in the left panel of Figure 2, four different dy-

namical scenarios can be distinguished (see Appendix 3 for the
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Figure 1. Examples of the nondegenerate group-size distribu-

tions used in this study: Poisson, geometric, and Waring. Param-

eters: nmin = 2, nmax = 100, and μN = 5. Top panel. Plots of the

probability mass functions. Bottom panel. Log–log plots of the

probability mass functions. For large values of n, the Waring dis-

tribution used in this study exhibits power-law behavior with ex-

ponent α = 3, that is, pn ∝ n−α with α = 3.

derivation):

(1) If γ > γ1 and γ > γ2, the only stable fixed point is x0 = 0,

and defection is dominant.

(2) If γ2 < γ < γ1, there is an interior fixed point xF , which is

stable, while both x0 = 0 and x1 = 1 are unstable. Cs and

Ds coexist at a polymorphic equilibrium with a proportion

xF of Cs.

(3) If γ < γ1 and γ < γ2 the only stable fixed point is x1 = 1,

and cooperation is dominant.

(4) If γ1 < γ < γ2, the interior fixed point xF is unstable and

both x0 = 0 and x1 = 1 are stable. There is bistability:

Cs and Ds cannot invade each other and the population

evolves either to x0 = 0 or x1 = 1 depending on the initial

conditions.

For constant group sizes, the conditions found by Hauert et al.

(2006b) are recovered, namely, γ2 = wμN −1/μN , and xF = x f ,

with

xF = x f = 1 − (γμN )1/(μN −1)

1 − w
.

For random group sizes, we have

∂2h(x, n)

∂n2
= b(1 − x + wx)n−1 ln2(1 − x + wx),

which is greater than zero for all x ∈ (0, 1), for all w �= 1 and

for all n. Hence, by Jensen’s inequality, F(x, N ) ≥ f (x,μN ) for

all x , with strict equality only in the case where the group-size

distribution is degenerate or when w = 1. This means that group-

size diversity systematically promotes cooperation in the PG-

GDS with respect to the case of constant group sizes for both

discounted and synergistically enhanced benefits. In particular,

since wn is a convex function of n, Jensen’s inequality gives

γ2 = E[wN−1]/μN > wμN −1/μN . As a result, the introduction

of group-size diversity makes the regions of dominant cooper-

ation and of bistability grow at the expense of the regions of

coexistence and dominant defection, respectively. Moreover, it is

clear that F(x, N ) > f (x,μN ) for all x implies that xF > x f for

w < 1 and xF < x f for w > 1. Hence, group-size diversity trans-

lates into a larger fraction of Cs when there is coexistence (see the

top panel of Fig. 3), and into a larger basin of attraction for the C

equilibrium when cooperation and defection are bistable (see the

bottom panel of Fig. 3). Overall, the degree of cooperation (given

by the fraction of Cs at equilibrium or by the size of the basin of

attraction of x1 = 1) in the case of random group sizes is always

greater than or equal to the respective degree of cooperation in

the case of constant group sizes, for any point in the parameter

space (see the right panel of Fig. 2).

For an arbitrary nmax, the critical value γ2 can be di-

rectly calculated from its defining series γ2 = 1
wμN

∑
n pnw

n ,

and the fixed point xF can be found by numerically solving

F(xF , N ) = 1
μN

∑
n pnn f (xF , n) = 0. This is the approach I used

for calculating the data shown in Figures 2 and 3. These calcula-

tions can be cumbersome for large values of nmax. In such cases,

it is more convenient to have closed-form expressions for γ2 and

F(x, N ). These can be obtained exactly in the limit nmax → ∞ if

the expected values converge (see Appendix 4) or approximated

EVOLUTION MARCH 2012 6 2 7
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Figure 2. Phase diagram and degree of cooperation in the PGGDS for the different group-size distributions. Left panel. Phase diagram

illustrating the four different dynamical regimes (defection, coexistence, cooperation, and bistability). Right panel. Degree of cooperation

for the different group-size distributions. The degree of cooperation is given by the fraction of Cs at equilibrium, except in the bistability

region where it is given by the size of the basin of attraction of the cooperative equilibrium. Parameters: nmin = 2, nmax = 100, μN = 5.

using equation (6) to obtain

γ2 ≈ wμN −1

μN

[
1 + ln2(w)σ2

N

2

]
,

and

F(x, N ) ≈ b

μN
(1 − x + wx)μN −1

[
1 + ln2(1 − x + wx)σ2

N

2

]
− c.

N-PERSON VOLUNTEER’S DILEMMA (NVD)

In the NVD (Diekmann 1985; Archetti, 2009a,b), each individual

in a group of size n must decide whether to volunteer to provide

a public good or not. If at least k players volunteer to pay a cost

c, everyone receives a benefit b. Thus B(i, n) = bθ(i − k), where

θ(x) is the Heaviside step function, such that θ(x < 0) = 0 and

θ(x ≥ 0) = 1, and C(i, n) = c. Here, I explore the simple case

where k = 1. Note that this case has sometimes been called N-

person snowdrift game (van Veelen and Nowak 2012).

With k = 1, we find

f (x, n) = b(1 − x)n−1 − c,

and

F(x, N ) = b

μN
E[N (1 − x)N−1] − c. (10)

Note that f is a monotonically decreasing function of x for

n ≥ 1, which implies that F = ∑
n qn f (x, n) is also a monoton-

ically decreasing function of x , because qn ≥ 0 ∀n. Additionally,

since F(0, N ) = b − c > 0 and F(1, N ) = −c < 0, the only sta-

ble state of the replicator dynamics is the fixed point xF ∈ (0, 1),

so that Cs and Ds coexist at a polymorphic equilibrium with a

proportion xF of Cs. In the general case of random group sizes,

xF can be found by numerically solving F(xF , N ) = 0. In the

case of constant group sizes, xF reduces to (Archetti 2009b)

xF = x f = 1 − γ1/(μN −1), (11)

where γ = c/b is the cost-to-benefit ratio. Note that the proportion

of Cs at equilibrium is inversely proportional to the cost-to-benefit

ratio.

For random group sizes, we have

∂2h(x, n)

∂n2
= b(1 − x)n−1 ln(1 − x)[n ln(1 − x) + 2], (12)

which is less than zero if n < η(x) and greater than zero if

n > η(x), with η(x) = −2/ ln(1 − x). Figure 4 shows a plot of

η(x). Note that η(x) → ∞ as x → 0 and η(x) → 0 as x → 1.

Thus, the domain of convexity of h in n decreases as x → 0

and increases as x → 1. Moreover, nmin and nmax determine

values xR = 1 − e−2/nmin and xL = 1 − e−2/nmax such that h is

concave in n for all n ∈ [nmin, nmax] if x < xL and convex in

n for all n ∈ [nmin, nmax] if x > xR . Hence, by Jensen’s inequal-

ity, F(x, N ) ≤ f (x,μN ) for x ≤ xL and F(x, N ) ≥ f (x,μN ) for

x ≥ xR . Intuitively, this should translate into more cooperation

than in the constant group-size case for low cost-to-benefit ra-

tios (where Cs are common at equilibrium) and less cooperation

than in the constant group-size case for high cost-to-benefit ratios

(where Cs are rare at equilibrium). This prediction is confirmed
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Figure 3. Effects of group-size diversity in the PGGDS. Top panel.

Evolutionary dynamics for w = 0.5, c = 1, and b = 15 (γμN = 1/3).

Coexistence: xF > xf . Bottom panel. Evolutionary dynamics for

w = 1.5, c = 1, and b = 1.5 (γμN = 10/3). Bistability: xF < xf . Pa-

rameters: nmin = 2, nmax = 100, μN = 5.

in Figure 5, which shows the stable equilibrium xF for different

group-size distributions with μN = 5, nmin = 2 and nmax = 100,

and the replicator dynamics for γ = 1/20 and γ = 2/5. It is clear

from these results that group-size diversity favors cooperation up

to a critical cost-to-benefit ratio γ∗, above which cooperation is

disfavored. Note, however, that the effect of group-size diversity

seems to be more pronounced when promoting than when hin-

dering cooperation. The exact value of γ∗ depends on the partic-

ular group-size distribution, but it can be well approximated (see

Appendix 5 ) by

γ∗ ≈ e−2(μN −1)/μN ,

0 xL xR 1

1
nmin

nmax

102

x

η

Figure 4. Plot of η(x) = −2/ ln(1 − x). Note that nmin and nmax

determine values xR = 1 − e−2/nmin and xL = 1 − e−2/nmax such that

n < η(x) for all nmin < n < nmax if x < xL and n > η(x) for all nmin <

n < nmax if x > xR . Note the logarithmic scale of the y-axis. Here,

nmin = 2 and nmax = 10.

which leads to γ∗ ≈ 0.2019 for μN = 5, in good agreement with

the results shown in Figure 5.

Appendix 6 gives closed-form expressions for F(x, N ) in

the limit when nmax → ∞. In this limit, and in the particular case

of the geometric distribution, an analytical expression for xF can

also be derived (see eq. 16 in Appendix 6). Finally, and for general

nmax, F(x, N ) can also be approximated using equation (6) so that

F(x, N ) ≈ b(1 − x)μN −1

×
{

1 + ln(1 − x)[μN ln(1 − x) + 2]
σ2

N

2μN

}
− c.

Discussion
The evolution of cooperation in sizable groups has been tradi-

tionally studied by investigating the evolutionary dynamics of the

NPD and other PGGs under the assumption that the group size

is constant. In the research presented in this article, I relaxed this

assumption and showed that although group-size diversity leaves

the linear NPD unaffected, it can lead to qualitative and quan-

titative changes in the evolutionary dynamics of more general,

nonlinear PGGs.

I have shown that the replicator dynamics of nonlinear PGGs

depend not only on the average group size but also on the variance

of the group-size distribution and on the convexity of the function

h = n f (x, n) (see eq. 6). Indeed, the evolution of cooperation is

promoted (hindered) with respect to the case of constant group

sizes when h is convex (concave) in the group-size n, the more

the larger the variance of the group-size distribution. In the PG-

GDS, h is always strictly convex and, consequently, group-size

diversity systematically leads to dynamical scenarios more favor-

able to the evolution of cooperation than what is obtained under
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0.0

0.2

0.4

0.6

0.8

1.0

γ)
0 0.2 0.4 0.6 0.8 1

st
ab

le
eq

ui
lib

riu
m

(x
F
)

constant
poisson
geometric
waring

0.0

0.2

0.4

0.6

0.8

1.0

γ)
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

fraction of cooperators (x)
0 0.2 0.4 0.6 0.8 1

gr
ad

ie
nt

of
se

le
ct

io
n

(x⋅ )

xF

xf

0.00

0.05

fraction of cooperators (x)
0 0.2 0.4 0.6 0.8 1

xF

xf

Figure 5. Effects of group-size diversity in the NVD dilemma. Stable equilibria shown as a function of the cost-to-benefit ratio γ = c/b

(top left) are also shown as a function of the benefit-to-cost ratio b/c (top right) to emphasize the promotion of cooperation for low

values of γ. Bottom left. Evolutionary dynamics for c = 1 and b = 20 (γ = 0.05). Bottom right. Evolutionary dynamics for c = 1 and b = 2.5

(γ = 0.4). Parameters: nmin = 2, nmax = 100, μN = 5.

the assumption of constant group sizes. Specifically, the introduc-

tion of variable group sizes enlarges the zones of the parameter

space where the cooperative equilibrium is stable, increases the

proportion of Cs at stable polymorphic equilibria when Cs and

Ds coexist, and leads to larger basins of attraction of the coop-

erative equilibrium when the replicator dynamics is bistable. In

the NVD, h is convex when Cs are common and concave when

Cs are rare. As a result, group-size diversity can either promote

or hinder cooperation with respect to the case where all groups

are of the same size depending on the cost-to-benefit ratio: there

is promotion for low cost-to-benefit ratios and hindering for high

cost-to-benefit ratios. Overall, I have shown that the degree of

cooperation in PGGs can be underestimated by focusing only on

the average group size, especially if the group-size distribution is

highly heterogeneous.

In the model presented here, the evolutionary dynamics of the

NPD is independent of the level of group-size diversity. Conse-

quently, cooperation cannot evolve in the NPD for any group-size

distribution. This result, which can be shown to agree with results

stemming from patch-structured models where group-size diver-

sity is endogenously determined (Lehmann et al. 2006; Alizon

and Taylor 2008), contrasts with the results of other models of

social evolution featuring variable group sizes where cooperation

has been shown to be viable under the NPD (Hauert et al. 2002,

2006a; Santos et al. 2008). The reason behind such seeming dis-

crepancy is to be found in the additional assumptions made in

these works, which are not made in the model presented here:

(1) fluctuating average group sizes resulting from voluntary par-

ticipation (Hauert et al. 2002) or ecological feedback (Hauert

et al. 2006a) that make the PGG to alternate between an NPD

(1 < r < μN ) and a game with no conflict (r > μN ), and (2) as-

sortment of strategies via network structure (Santos et al. 2008).

Simply introducing variance in the group-size distribution does

not make the average group size fluctuate over time nor introduces

assortment; as a result, cooperation can not be made possible in

the NPD by group-size diversity alone.

Contrastingly, group-size diversity can promote the evolution

of cooperation with respect to the case where the group size is

constant in nonlinear PGGs. This has been demonstrated here for

the specific cases of the PGGDS (cooperation promoted for the
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whole of the parameter space, except when w = 1 where the NPD

is recovered) and the NVD (promotion of cooperation for low

cost-to-benefit ratios). As mentioned above, the resulting promo-

tion of cooperation does not derive from any kind of assortment,

but solely from the interaction between the nonlinearity of public

good functions and the variability of group sizes. Such interaction

is nicely captured by Jensen’s inequality, a somewhat counterin-

tuitive result in probability theory stating that the average of a

nonlinear function does not equal the function of the average.

This is not the first time that a statistical phenomenon which is

apparently paradoxical is associated with models of social evo-

lution. Many readers will be familiar with Simpson’s paradox

(Simpson 1951; Blyth 1972; Bickel et al. 1975): the reversal of a

correlation present in different groups when the groups are com-

bined which has been often invoked to explain the evolution of

cooperation (Sober and Wilson 1998; Hauert et al. 2002, 2006a;

Chuang et al. 2009). In the model of nonlinear PGGs with variable

group sizes studied here, both Simpson’s paradox and Jensen’s in-

equality are at work. Simpson’s paradox manifests itself in the fact

that, for both the PGGDS and the NVD, cooperation is disfavored

in each mixed group (PC (i, n) − PD(i, n) < 0 for all n and all

0 < i < n), but it can be favored globally ( fC (x, n) > fD(x, n)

for at least some x) and hence evolutionarily viable. Jensen’s in-

equality is brought about by the variation in group size and the

nonlinearity of payoff functions, so that cooperation is promoted

with respect to the constant case if h = n f (x, n) is convex in n.

Considered together, Simpson’s paradox and Jensen’s inequality

help us understand mathematically the apparent paradox of the

evolution of cooperation in variable group-structured populations

of individuals facing social dilemmas.

For the sake of parsimony, I have based my analysis on the

standard replicator dynamics, which relies on the assumption that

the evolving population is of infinite size. Recent work on evo-

lutionary game theory has suggested ways of taking into account

the finite nature of real populations, replacing the deterministic

replicator equation by frequency-dependent stochastic processes

(Rousset and Billiard 2000; Nowak et al. 2004). Initially devel-

oped for studying two-person games, the theory has been ex-

tended to take into account multiplayer games as well (Kurokawa

and Ihara 2009; Gokhale and Traulsen 2010). Preliminary results

suggest that the effects of group-size diversity on the evolution-

ary dynamics of multiplayer games in finite populations can be

studied in much the same way as it has been done here for the

case of infinite populations, that is, by checking the convexity (in

the group-size n) of functions of the form h = n f (n), where f is

a function ruling the dynamic behavior of the system. It is worth

pointing out, however, that the effects of group-size diversity in

finite populations can be sometimes qualitatively different from

those arising in infinite populations. Further work along these

lines is in progress.

In addition to studying finite populations, the work presented

in this article can be extended in several ways. First, more gen-

eral social dilemmas can be explored. In the case of the NVD,

for instance, I limited myself to the case where one volunteer is

sufficient for providing the public good. More generally, however,

one can assume that the minimal number of volunteers required

for providing the public good in a group of size n is any integer

1 ≤ k ≤ n. For the extreme case where k = n (mathematically

equivalent to a weakest-link N-person stag hunt game [Hirsh-

leifer 1983; Skyrms 2004; van Veelen and Nowak 2012]), one

obtains the same results as for the case k = 1 analyzed here, up to

the replacement x ↔ 1 − x . The resulting evolutionary dynamics

is one characterized by bistability, with one internal unstable equi-

librium standing between the basins of attraction of the two pure

stable equilibria. As in the case k = 1, group-size diversity can

be shown to promote (hinder) cooperation with respect to what is

obtained when groups are of equal sizes for low (high) cost-to-

benefit ratios. Indeed, the results for k = n can be obtained from

those shown in the top panels of Figure 4 for k = 1 by reinter-

preting the y-axis as showing the size of the basin of attraction of

the cooperative equilibrium. The cases with 1 < k < n are more

difficult to analyze, as they can give rise to replicator dynamics

with two internal equilibria, and should be addressed in future

work.

Yet another possibility is to explore the effects of group-size

diversity in games where cost functions are decreasing functions

in the number of Cs, as when the cost for providing the pub-

lic good is assumed to be shared among Cs. Also, augmenting

the NPD with reciprocity, punishment or rewarding leads to non-

linear payoff functions and thus to evolutionary game dynamics

susceptible of being influenced by group-size diversity. Finally,

individual variation resulting from development or ecology can

be modeled by letting costs and benefits be random variables with

prescribed probability distributions. Such individual variation can

be taken into account independently of or together with group-

size variation and explored by making use of Jensen’s inequality

in a similar way as the one proposed in this article.

Recent theoretical and empirical research has suggested that

nonlinear social dilemmas and heterogeneous group-size distri-

butions are the rule rather than the exception in the organization

of social and biological systems (Bonabeau et al. 1999; Archetti

and Scheuring, in press). As demonstrated here, the simultane-

ous presence of nonlinearity and group-size variance greatly en-

rich the evolutionary dynamics of N-person games and open up

unexpected opportunities for the evolution and maintenance of

cooperation in biological and social systems.
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Appendix 1
SECOND-ORDER APPROXIMATION FOR F(x, N)

Expanding h(x, n) = n f (x, n) as a Taylor series about n = μN ,

we obtain

h(x, n) =
∞∑

k=0

h(k)(x,μN )

k!
(n − μN )k,

where h(k)(x,μN ) is the kth partial derivative of h in n evaluated

at n = μN . Writing this expression as a function of the random

variable N , taking the expected value and dividing both sides by
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μN , we obtain

F(x, N ) =
∞∑

k=0

h(k)(x,μN )E
[
(N − μN )k

]
μN k!

= f (x,μN ) + h(2)(x,μN )E
[
(N − μN )2

]
2μN

+
∞∑

k=3

h(k)(x,μN )E
[
(N − μN )k

]
μN k!

,

which, assuming E[(N − μN )k]/(μN k!) ≈ 0 for k ≥ 3, gives

equation (6) in the main text.

Appendix 2
GROUP-SIZE DISTRIBUTIONS

I assume that the group-size N is a random variable with support

n ∈ {nmin, nmin + 1, . . . , nmax}. The distribution of N is given by

truncating a random variable K distributed according to a Poisson,

geometric, or Waring distribution, so that

pn = Pr(N = n) = φn−nmin

nmax∑
n=nmin

φn−nmin

,

with φk = Pr(K = k). Table A1 shows the formulas for the prob-

ability mass function φk , the generating function
∑∞

k=0 φk zk , the

mean μK , the variance σ2
K , and the variance-to-mean ratio σ2

K /μK ,

for different choices of the distribution of K . For the Waring dis-

tribution, I set ρ = 2 so that, for large k, the distribution approx-

imates a power-law Pr(K = k) ∝ k−α with exponent α = 3. The

free parameters (λ for the Poisson distribution, p for the geomet-

ric distribution, and a for the Waring distribution) are calculated

to set the value μN . For finite nmax, this means (numerically)

solving the equation
∑

n npn = μN . For nmax → ∞, we have

E[N ] = E[K ] + nmin so that the free parameters can be easily set

so that μK = μN − nmin.

The functions F(x, N ) resulting from the two specific cases

of nonlinear PGGs analyzed in this article depend on expres-

sions of the form E[zN ] or E[N zN ] (see eqs. 8 and 10). When

nmax → ∞, pn = φn−nmin , and we can write such expressions as

functions of the generating function of the variable K . Indeed

E[zN ] =
∞∑

n=nmin

pnzn =
∞∑

k=0

pk+nmin zk+nmin = znmin

∞∑
k=0

φk zk,

(A1)

and

E[N zN ] =
∞∑

n=nmin

pnnzn

=
∞∑

k=0

pk+nmin (k + nmin)zk+nmin

= znmin

( ∞∑
k=0

φkkzk + nmin

∞∑
k=0

φk zk

)

= znmin

(
z

d

dz

∞∑
k=0

φk zk + nmin

∞∑
k=0

φk zk

)
. (A2)

I shall make use of equations (A1) and (A2) to write closed-form

expressions for F(x, N ) for the PGGDS (Appendix 4) and the

NVD (Appendix 6).

Appendix 3
DYNAMICAL SCENARIOS IN THE PGGDS

For the PGGDS, f (x, n) is given by equation (7) and F(x, N ) by

equation (8). Taking the derivative of f (x, n) with respect to x ,

we obtain

∂ f (x, n)

∂x
= b(n − 1)(w − 1)[1 − x + wx]n−2

n
,

which, for n > 1, is equal to zero for w = 1, negative for

w < 1 and positive for w > 1. Then, for a fixed value of w,

f (x, n) is a monotone function of x in [0, 1]. This means that

F(x, N ) = ∑
n qn f (x, n) is also a monotone function of x in

[0, 1], because qn ≥ 0 ∀n. Moreover, F(0, N ) = b/μN − c and

F(1, N ) = bE[wN−1]/μN − c. Therefore, the replicator dynam-

ics given by equation (2) can have at most one fixed point xF in

(0, 1), and this when F(0, N ) and F(1, N ) are of opposite sign.

We thus have the following four scenarios:

1. F(0, N ) < 0 and F(1, N ) < 0. Hence, F(x, N ) < 0 ∀x

(only x0 = 0 is stable).

Table A1. Probability mass function (φk), generating function (
∑∞

k=0 φkzk), mean (μK ), variance (σ2
K ), variance-to-mean ratio (σ2

K /μK ),

and parameters for the three choices of K used in this study. For the Waring distribution, �(x) is the gamma function, and 2 F1(a, b; c; z) =∑∞
k=0

(a)k(b)kzk

(c)kk! is the Gauss hypergeometric function, where (a)k = a (a + 1) . . . (a + k + 1) = �(a + k)/�(a) is the Pochhammer symbol.

φk
∑∞

k=0 φk zk μK σ2
K σ2

K /μK Parameters

Poisson λk e−λ

k! eλ(z−1) λ λ 1 λ > 0
Geometric (1 − p)k p p

1−(1−p)z
1−p

p
1−p

p2
1
p > 1 0 < p < 1

Waring ρ�(ρ+a)�(k+a)
�(a)�(k+ρ+a+1)

ρ

ρ+a 2 F1(a, 1; ρ + a + 1; z) a
ρ−1 ∞ ∞ ρ > 0, a > 0
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2. F(0, N ) > 0 and F(1, N ) < 0. Hence, F(x, N ) > 0 for

x < xF and F(x, N ) < 0 for x > xF (x0 = 0 and x1 = 1

are unstable; xF exists and is stable).

3. F(0, N ) > 0 and F(1, N ) > 0. Hence, F(x, N ) > 0 ∀x

(only x1 = 1 is stable).

4. F(0, N ) < 0 and F(1, N ) > 0. Hence, F(x, N ) < 0 for

x < xF and F(x, N ) > 0 for x > xF (x0 = 0 and x1 = 1

are stable; xF exists and is unstable).

Defining γ, γ1 = 1/μN and γ2 = E[wN−1]/μN , the scenar-

ios given in the main text are recovered.

Appendix 4
CLOSED-FORM EXPRESSIONS FOR γ2 AND F(x, N) IN

THE LIMIT nmax → ∞ (PGGDS)

Here, I calculate closed-form expressions for γ2 and F(x, N ) in

the limit nmax → ∞ for the PGGDS.

Poisson distribution
From equations (8), (9), (A1), and the expression for the generat-

ing function of the Poisson distribution (see Table A1), we obtain

after little algebra

F(x, N ) = b

μN
(1 − x + wx)nmin−1eλ(w−1)x − c,

and

γ2 = wnmin−1

μN
eλ(w−1),

with λ = μN − nmin. The previous expressions are valid for all

w, because the generating function of the Poisson distribution

converges for all z.

Solving F(xF , N ) = 0, we obtain

xF =
(nmin − 1)W

(
λ(γμN eλ)1/(nmin−1)

nmin − 1

)
− λ

λ(w − 1)
, (A3)

where W is the Lambert W -function, that is, the inverse function

of f (W ) = W eW .

Geometric distribution
We obtain

F(x, N ) = bp(1 − x + wx)nmin−1

μN [1 − (1 − p)(1 − x + wx)]
− c,

and

γ2 = pwnmin−1

μN [1 − (1 − p)w]
,

with p = 1/(μN − nmin + 1). These expressions are valid only for

w < 1/(1 − p), because the generating function of the geomet-

ric distribution converges only for z < 1/(1 − p). For nmin = 2,

F(xF , N ) = 0 can be solved analytically, yielding

xF = p(1 − γμN )

(1 − w)[p(1 − γμN ) + γμN ]
.

Waring distribution
We obtain

F(x, N )=2b(1 − x + wx)nmin−1

μN (a + 2)
2 F1(a, 1; a+3; 1 − x + wx)−c,

and

γ2 = 2wnmin−1

μN (a + 2)
2 F1(a, 1; a + 3; w),

with a = μN − nmin. 2 F1(a, b; c; z) is the Gauss hypergeomet-

ric function (see Table A1). The previous expressions are valid

only for w < 1, because the generating function of the geometric

distribution converges only for z < 1.

Appendix 5
AN APPROXIMATION FOR γ∗ IN THE NVD

Let us define the critical value γ∗ as the cost-to-benefit ratio such

that xF = x f . The exact value of γ∗ will depend on the particular

group-size distribution. However, a useful approximation for γ∗

can be found in the following way. From equations (6) and (12),

we have that F(xF (γ∗), N ) ≈ f (x f (γ∗),μN ), if

∂2h(x f ,μN )

∂n2
= b(1 − x f )μN −1[μN ln(1 − x f ) + 2] = 0.

Solving for x f , we obtain x f (γ∗) ≈ 1 − e−2/μN . Finally, com-

paring this with equation (11) and solving for γ∗, we obtain the

approximation given in the main text.

Appendix 6
CLOSED-FORM EXPRESSIONS FOR F(x, N) IN THE

LIMIT nmax → ∞ (NVD)

Here, I calculate closed-form expressions for F(x, N ) in the limit

nmax → ∞ for the NVD.

Poisson distribution
From equations (10), (A2), and the expression for the generating

function of the Poisson distribution (see Table A1), we obtain

after little algebra

F(x, N ) = b

μN
(1 − x)nmin−1e−λx [nmin + λ(1 − x)] − c,

with λ = μN − nmin.
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Geometric distribution
We obtain

F(x, N )

= b

μN

(1 − x)nmin−1 p[nmin − (nmin − 1)(1−p)(1 − x)]

[1 − (1 − p)(1 − x)]2
− c,

with p = 1/(μN − nmin + 1). For nmin = 2, F(xF , N ) = 0 can be

solved analytically, yielding

xF = 1

1 − p

(√
p

p + γμN (1 − p)
− p

)
. (A4)

Waring distribution
We obtain

F(x, N ) = b(1 − x)nmin−1

μN

a(1 − x)

ρ + a + 1
2

× F1(a + 1, 2; ρ + a + 2; 1 − x)

+ b(1 − x)nmin−1

μN

nminρ

ρ + a
2

× F1(a, 1; ρ + a + 1; 1 − x) − c,

with a = μN − nmin.
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