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H I G H L I G H T S

� We study the evolutionary dynamics of two-strategy symmetric multi-player matrix games.
� We make use of the theory of polynomials in Bernstein form.
� We unify, simplify and extend previous work on evolutionary multi-player games.
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a b s t r a c t

In this paper we unify, simplify, and extend previous work on the evolutionary dynamics of symmetric
N-player matrix games with two pure strategies. In such games, gains from switching strategies depend,
in general, on how many other individuals in the group play a given strategy. As a consequence, the gain
function determining the gradient of selection can be a polynomial of degree N�1. In order to deal with
the intricacy of the resulting evolutionary dynamics, we make use of the theory of polynomials in
Bernstein form. This theory implies a tight link between the sign pattern of the gains from switching on
the one hand and the number and stability of the rest points of the replicator dynamics on the other
hand. While this relationship is a general one, it is most informative if gains from switching have at most
two sign changes, as is the case for most multi-player matrix games considered in the literature. We
demonstrate that previous results for public goods games are easily recovered and extended using this
observation. Further examples illustrate how focusing on the sign pattern of the gains from switching
obviates the need for a more involved analysis.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Game theory has been widely applied to evolutionary biology
(Maynard Smith and Price, 1973; Maynard Smith, 1982; Eshel,
1996; Hofbauer and Sigmund, 1998; Rousset, 2004; Vincent and
Brown, 2005; Dercole and Rinaldi, 2008; Broom and Rychtář,
2013). More specifically, the application of game-theoretic con-
cepts has been instrumental in explaining the evolution of traits
as diverse as the sex ratio (Hamilton, 1967; Frank, 1987),
dispersal (Hamilton and May, 1977; Comins et al., 1980), reci-
procity (Axelrod and Hamilton, 1981), group foraging (Clark and
Mangel, 1986), policing (Frank, 1995), and anisogamy (Bulmer
and Parker, 2002). Evolutionary models of these traits often
assume “playing the field” type of interactions (Maynard Smith,

1982, p. 23), where the payoff to an individual depends on an
average property of the population or the group with which it
interacts.

There are many situations, however, where the payoff to an
individual depends critically on the strategy profile in the population
(or its group) and where the actions of different individuals cannot
be averaged; that is, mass action does not apply. Typical examples
involve collective action problems in moderately sized groups, where
the change in behavior by a single individual can result in a large,
discontinuous change in payoffs to others (e.g., Boyd and Richerson,
1988). Such collective action problems have been modeled as multi-
player (or multi-person) matrix games (Broom et al., 1997; Kurokawa
and Ihara, 2009; Gokhale and Traulsen, 2010). Except for the very
special cases in which group size is taken to be equal to two (so that
the well-developed theory of two-player matrix games can be
applied, cf. Weibull, 1995; Hofbauer and Sigmund, 1998; Cressman,
2003) or the payoff structure is linear (as in the standard model of
the N-person prisoner0s dilemma), such games have proven to be
difficult to analyze.
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The intrinsic complexity of multi-player matrix games is
already evident for the case of symmetric games with two pure
strategies A and B on which we focus in this paper. For these
games, the average payoff difference in a large and well-mixed
population is given by the so-called gain function (Bach et al.,
2006)

gðxÞ ¼ ∑
n

k ¼ 0

n

k

� �
xkð1�xÞn�kdk:

Here, n is the number of co-players of a focal player (so that
N¼ nþ1 is the group size), x is the population fraction of
A-strategists, and dk is the gain a focal player would obtain if
switching from strategy B to strategy A when k other group-
members play A. The evolutionary solution of the game (such as
the set of evolutionarily stable strategies, ESSs, or the set of stable
rest points of the replicator dynamics) involves not only finding
the roots of the gain function g(x) (a polynomial of degree n) but
also, as discussed in Broom et al. (1997), determining the behavior
of g(x) in the vicinity of such roots. While this is straightforward
for two-player games (for which g(x) is linear in x) and a full
classification for three-player games (for which g(x) is quadratic in
x) is available (Bukowski and Mie¸kisz, 2004), payoff structures in
groups of size larger than five lead to polynomials of degree
greater than four that cannot, in general, be solved analytically
(Clark, 1984).

In order to deal with such complexity, the vast majority of
previous works on multi-player matrix games has considered
particular functional forms for the specification of the payoffs
and has resorted to lengthy algebra or numerical methods to study
the models (Joshi, 1987; Boyd and Richerson, 1988; Dugatkin,
1990; Weesie and Franzen, 1998; Hauert et al., 2006; Zheng et al.,
2007; Cuesta et al., 2008; Pacheco et al., 2009; Archetti, 2009;
Souza et al., 2009; Archetti and Scheuring, 2011; van Segbroeck
et al., 2012). In this way, some non-linear public goods games,
including multi-player extensions of well-known two-person
matrix games such as the stag hunt (Skyrms, 2004) and the
snowdrift game (Sugden, 1986), have been characterized on a
case-by-case basis.

In contrast to these efforts, Motro (1991) and Bach et al. (2006)
have taken a more systematic approach to the study of non-linear
public goods games. Both of these papers consider situations in
which each contributor to a public good pays a constant cost,
whereas the benefit from the public good, which is obtained by all
players, is a function of the number of contributors. Motro (1991)
proves that in this case the replicator dynamics has at most one
interior rest point if the benefit is concave or convex in the
number of contributors. He also provides necessary and sufficient
conditions for the existence of such a rest point and characterizes
the stability property of all rest points. In a similar spirit, Bach
et al. (2006) find sufficient conditions on the shape of the benefits
such that there exists a critical cost level with the property that for
costs below such a level the replicator dynamics has two interior
rest points, whereas for higher costs there is no interior rest point.

Gokhale and Traulsen (2010) have discussed the relationship
between the sign pattern of the gains from switching and the
number of interior rest points of the replicator dynamics. Speci-
fically, these authors observe that the replicator dynamics has a
single interior rest point if the sequence ðd0; d1;…; dnÞ, which we
refer to as the gain sequence, has exactly one sign change. Gokhale
and Traulsen (2010) also note that the direction of selection (as
given by the sign of the gain function g(x)) cannot have more sign
changes than the gain sequence. This implies that the number of
sign changes of the gain sequence provides an upper bound on the
number of interior rest points of the replicator dynamics. The
latter observation is also made in Hauert et al. (2006) and Cuesta
et al. (2007). When g(x) has no multiple roots, any upper bound on

the number of interior rest points translates directly into an upper
bound on the number of stable rest points because, as noted in
Broom et al. (1997, p. 939), in this case the rest points alternate
between being stable and unstable.

In this paper, we show how sign-change conditions like the
ones discussed by Gokhale and Traulsen (2010) can be refined by
using the fact that the gain function g(x) is a particular kind of
polynomial, known as a polynomial in Bernstein form (or Bern-
stein polynomial), with coefficients given by the gain sequence
ðd0; d1;…; dnÞ. Our analysis rests on the variation-diminishing
property of Bernstein polynomials and a property that we refer
to as the preservation of initial and final signs. These properties
provide a tight link between the sign pattern of the gain sequence
and the sign pattern of the gain function.1 In particular, if the gain
sequence has at most two sign changes, a full characterization of
the possible dynamic regimes is easily obtained.

For most of the collective action problems that have been
modeled as multi-player matrix games it is straightforward to
determine the sign pattern of the gain sequence. Moreover,
because the gain sequences of these games have at most two sign
changes, our characterization results provide all the information
necessary to recover the results on the number and stability of rest
points obtained in previous studies. We demonstrate these claims
for two classes of public goods games, namely threshold games
(e.g., Dugatkin, 1990; Weesie and Franzen, 1998; Zheng et al.,
2007; Souza et al., 2009) and constant cost games (e.g., Motro,
1991; Bach et al., 2006; Hauert et al., 2006; Pacheco et al., 2009;
Archetti and Scheuring, 2011), and two additional examples taken
from Hauert et al. (2006) and van Segbroeck et al. (2012), thus
supporting the claim that the approach developed here unifies,
simplifies, and extends much of the previous work on multi-player
matrix games.

2. Model

Interactions occur in groups of size N¼ nþ1, in which a focal
individual plays a game against n co-players or opponents. Each
individual can choose between one of two different pure strate-
gies, A and B. The game is symmetric so that, from the focal0s point
of view, any two co-players are exchangeable.

Let ak denote the payoff to an individual choosing A when k
opponents choose A (and hence n�k co-players choose B); like-
wise, let bk denote the payoff to an individual choosing B when k
opponents choose A. Also let

dk � ak�bk

denote the gain the focal player makes from choosing A over B,
taking the choices of other players (k playing A and n�k playing B)
as given. The parameters dk, which describe the gains from
switching, are collected in the gain sequence d¼ ðd0;d1;…; dnÞ.
We assume da0, thus excluding the uninteresting case in which
payoffs are independent of the actions chosen.

Evolution occurs in an infinitely large and well-mixed popula-
tion with groups randomly formed by binomial sampling. Hence,
if the frequency of A-strategists in the whole population is x, the
average payoffs obtained by an A-strategist and a B-strategist are
respectively given by

πAðxÞ ¼ ∑
n

k ¼ 0

n

k

� �
xkð1�xÞn�kak

1 The fact that the gain function g(x) is a Bernstein polynomial has previously
been noted by Cuesta et al. (2007). These authors also suggest that the variation
diminishing property of these polynomials may make the analysis of many multi-
player games straightforward, but do not pursue this idea.
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and

πBðxÞ ¼ ∑
n

k ¼ 0

n

k

� �
xkð1�xÞn�kbk:

We assume that the rules of transmission of the strategies
(whether genetically encoded or individually or socially learned)
are such that the frequency x of A-strategists in the population can
be described by the replicator dynamics (Taylor and Jonker, 1978;
Hofbauer and Sigmund, 1998):

dx
dt

¼ xð1�xÞgðxÞ; ð1Þ

where gðxÞ ¼ πAðxÞ�πBðxÞ is the gain function (Bach et al., 2006)
given by

gðxÞ ¼ Bnðx;dÞ � ∑
n

k ¼ 0

n
k

� �
xkð1�xÞn�kdk: ð2Þ

As we have already mentioned in the Introduction, the gain
function is a polynomial in Bernstein form (also known as a
Bernstein polynomial, cf. Farouki, 2012). This is made explicit by
the notation we introduce in (2), where the Bernstein operator Bn

maps the vector of Bernstein coefficients dARnþ1 into the poly-
nomial ∑n

k ¼ 0ðnkÞxkð1�xÞn�kdk in the variable xA ½0;1�.
The replicator dynamics (1) has two trivial rest points at x¼0

(where the whole population consists of B-strategists) and x¼1
(where the whole population consists of A-strategists). Interior
rest points 0oxno1 are given by the solutions of the equation
gðxnÞ ¼ 0. Because g(x) is a polynomial of degree at most n (and we
have assumed da0) the replicator dynamics can have at most n
interior rest points, corresponding to n simple roots of g(x) in the
open interval (0,1). In the two-strategy case we analyze here, rest
points of the replicator dynamics can be either (locally asymptotic)
stable or unstable. Stability of a rest point xn requires that
ðx�xnÞðgðxÞ�gðxnÞÞo0 holds for all xaxn in the vicinity of xn.
Since the stable rest points of the replicator dynamics correspond
to ESSs for the multi-player game (Bach et al., 2006), our following
results about stable rest points of the replicator dynamics carry
over to ESSs without any changes.

Remark 1. The gain function g(x) given in (2) can also be
interpreted as the selection gradient on a continuously varying
mixed strategy x (denoting here the probability that an individual
plays action A), evolving according to the traditional breeder0s
equation or the canonical equation of adaptive dynamics
(Dieckmann and Law, 1996), so that the dynamics is of the form

dx
dt

¼ vðxÞgðxÞ;

for some measure v(x) of genetic variance (Kirkpatrick and
Rousset, 2005). Hence, all our subsequent results pertaining to
polymorphic equilibria in pure strategies can also be interpreted in
terms of monomorphic equilibria for mixed strategies.

3. Sign patterns and (the stability of) rest points

The fact that the gain function is a polynomial in Bernstein
form implies a tight link between the sign pattern of the gain
sequence on the one hand and the sign pattern and number of
roots of the gain function on the other hand. This is due to two
properties of Bernstein polynomials, namely the preservation of
initial and final signs and the variation diminishing property (see
Properties 1 and 2). Because roots of the gain function correspond
to interior rest points of the replicator dynamics and the sign
pattern of the gain function informs us about changes in the
direction of selection at interior rest points (as well as the
direction of selection at the trivial rest points), general results
about the number and stability of rest points follow immediately

(see Results 1 and 2). These results hold for any non-zero gain
sequence, allow for interior rest points at which the direction of
selection does not change, and provide more detailed information
about the number of rest points and stable equilibria than the
observations made by Cuesta et al. (2007) and Gokhale and
Traulsen (2010). Results 3–5 summarize the implications of the
general results for gain sequences with at most two sign changes,
providing the basis for our subsequent analysis.

3.1. Preliminaries

To proceed, we require some terminology and notation to
describe sign patterns (see Brown et al., 1981) and other relevant
shape properties of gain sequences and gain functions. The same
notation and terminology applies to other sequences and functions
we encounter in our analysis.

Let IðdÞ denote the sign (either þ or �) of the first non-zero
entry in the sequence d. Likewise, let FðdÞ denote the sign of the
last non-zero entry in d. We refer to IðdÞ and FðdÞ as the initial and
final signs of the gain sequence d, respectively. We also denote by
SðdÞ the number of sign changes between consecutive entries in d
after zero entries have been eliminated. Obviously, 0rSðdÞrn.

As we have assumed da0, there exists a neighborhood of
xn ¼ 0 such that the sign of g(x) is either þ or � for all xa0 in this
neighborhood. We define the initial sign I(g) of g(x) as the sign of g
(x) in such neighborhood, and define the final sign F(g) in an
analogous way. Note that I(g) coincides with the sign of gð0Þ if
gð0Þa0 holds. Similarly, if gð1Þa0 holds, then F(g) coincides with
the sign of gð1Þ. The number of sign changes S(g) of the function g
(x) in the interval (0,1) is the number of times it crosses the x-axis
in (0,1).

The notation Δd¼ ðΔd0;…;Δdn�1Þ, where Δdk � dkþ1�dk,
denotes the (first) forward difference of the sequence d. The second
forward difference of the sequence d is Δ2d¼ ðΔ2d0;…;Δ2dn�2Þ,
where Δ2dk �Δdkþ1�Δdk. These forward differences can be viewed
as the counterparts to the first and second derivatives of a real
function and are a useful tool for describing the shape of a sequence.
In particular, the sequence d is increasing (resp. decreasing) if ΔdZ0
(Δdr0) holds, convex (resp. concave) if Δ2dZ0 (resp. Δ2dr0)
holds, and unimodal (resp. anti-unimodal) if the sequence Δd has a
single sign change from positive to negative (resp. from negative to
positive). Corresponding definitions apply to the gain function g(x).
For instance, a gain function is unimodal if its first derivative g0ðxÞ has
one sign change from positive to negative and is concave if its second
derivative satisfies g″ðxÞr0 for all 0rxr1.

3.2. Stability of trivial rest points

One important property of the Bernstein operator Bn is that it
preserves end-points, i.e. gð0Þ ¼ Bnð0;dÞ ¼ d0 and gð1Þ ¼ Bnð1;dÞ ¼ dn
(Farouki, 2012). From this, it is immediate that the initial and final
signs of g(x) and d coincide in the case when d0a0 and dna0. We
show in Appendix A that the same conclusion obtains in general, so
that we have the following property.

Property 1 (Preservation of initial and final signs). The initial and
final signs of g(x) and d coincide. That is,

IðgÞ ¼ IðdÞ and FðgÞ ¼ FðdÞ:

The initial sign of g(x) describes the direction of selection in a
vicinity of the trivial rest point x¼0, so that the rest point x¼0 is
stable if and only if the initial sign of g(x) is negative. Similarly, the
rest point x¼1 is stable if and only if the final sign of g(x) is
positive. Hence, Property 1 implies that the initial and final signs
of the gain sequence are all the information required to determine
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the stability of the trivial rest points. This is explicitly stated in the
following result, which has previously been noted by Broom et al.
(1997, Section 4.1).

Result 1 (Stability of trivial rest points).

1. The rest point x¼0 is stable if and only if IðdÞ ¼ � .
2. The rest point x¼1 is stable if and only if FðdÞ ¼ þ .

The first part of Result 1 asserts that strategy A is disadvanta-
geous when rare if and only if the first non-zero element in the
gain sequence is negative. The second part is the assertion that
strategy A is advantageous when common if and only if the last
non-zero element in the gain sequence is positive.

3.3. Number of (stable) interior rest points

Let RðgÞZ0 denote the number of roots of g(x) in the interval
(0,1), counting roots according to their multiplicity. The following
is the variation diminishing property of Bernstein polynomials.

Property 2 (Variation diminishing property).

1. The number of roots of g(x) on (0,1) is equal to the number of
sign changes of d or less by an even amount. That is,
RðgÞ ¼ SðdÞ�2i; where iZ0 is an integer: ð3Þ

2. The number of sign changes of g(x) is equal to the number of
sign changes of d or less by an even amount. That is,
SðgÞ ¼ SðdÞ�2j; where jZ i is an integer: ð4Þ

The first part of the variation-diminishing property (see e.g.
Farouki, 2012) follows from Descartes0 rule of signs, which hence
can be said to “carry over” to polynomials in Bernstein form. The
second part follows from the first upon observing that xA ð0;1Þ is
the location of a sign change of g(x) if and only if x is a root of g(x)
with odd multiplicity, so that S(g) is either equal to R(g) or less by
an even amount.

As the interior rest points of the replicator dynamics coincide
with the roots of g(x), Property 2.1 applies as stated to the interior
rest points of the replicator dynamics. In particular, as noted by
Cuesta et al. (2007) and Gokhale and Traulsen (2010), the number
of sign changes of the gain sequence d provides an upper bound
on the number of interior rest points. If the number of sign
changes of d is odd, (3) implies that R(g) is odd. Consequently,
the replicator dynamics possesses at least one interior rest point in
this case.

Stability of an interior rest point is equivalent to the require-
ment that the sign of g(x) changes from þ to � at the rest point.
As sign changes must alternate and initial signs are preserved
(Property 1), the second part of the variation diminishing property
yields the following result.

Result 2 (Number of stable interior rest points). Let ℓ denote the
number of stable interior rest points of the replicator dynamics and
let jZ0 be the integer appearing in the statement of Property 2.2.

1. If SðdÞ is even, then ℓ¼ SðgÞ=2¼ SðdÞ=2� j.
2. If SðdÞ is odd and IðdÞ ¼ � , then ℓ¼ ðSðgÞ�1Þ=2¼

ðSðdÞ�1Þ=2� j.
3. If SðdÞ is odd and IðdÞ ¼ þ , then 1rℓ¼ ðSðgÞþ1Þ=2¼

ðSðdÞþ1Þ=2� j.

In the generic case in which g(x) has no multiple roots, the
argument yielding Result 2 reduces to the one given by Broom
et al. (1997, p. 939).

3.4. Special cases

It will be convenient to summarize the relationship between the
sign patterns of the gain sequence and the rest points of the replicator
dynamics for the cases in which the gain sequence has at most two
sign changes. We also provide simple sufficient conditions ensuring
that a gain sequence has at most one or at most two sign changes.

3.4.1. Gain sequences with one or no sign change
When the gain sequence has no or one sign change, the

variation diminishing property implies that both the number of
roots and the number of sign changes of the gain function coincide
with the number of sign changes of the gain sequence.
In particular, Result 2 holds with j¼0. Combining these observa-
tions with Result 1 then shows that for games with gain sequences
having at most one sign change, the sign pattern of the gain
sequence contains all the information required to determine the
number and stability of rest points. For later reference we state the
ensuing case distinction in the following result.

Result 3 (Gain sequences with no or one sign change).

1. If the gain sequence has no sign changes, then the replicator
dynamics has no interior rest points. Moreover
(a) If IðdÞ ¼ � , then x¼0 is stable and x¼1 is unstable.
(b) If IðdÞ ¼ þ , then x¼0 is unstable and x¼1 is stable.

2. If the gain sequence has a single sign change, then the
replicator dynamics has a unique interior rest point xn.
Moreover
(a) If IðdÞ ¼ � , then x¼0 and x¼1 are stable, and xn is unstable.
(b) If IðdÞ ¼ þ , then x¼0 and x¼1 are unstable, and xn is stable.

The four possible dynamical regimes appearing in Result 3
correspond to the cases that are familiar from the evolutionary
analysis of symmetric two-player games with two pure strategies
(see, e.g. Cressman, 2003, Section 2.2). This is, of course, not a
coincidence: such two-player games are nothing but the special
case of our model with n¼1 and thus feature gain sequences with
at most one sign change.

A simple sufficient condition for the applicability of Result 3 is
that the gain sequence is monotonic, that is, either increasing or
decreasing. It is clear that an increasing gain sequence can have at
most one sign change and that such a sign change occurs if and
only if d0o0odn. In this case, the rest points of the replicator
dynamics are characterized by Result 3.2(a). The other two
possibilities for an increasing gain sequence, namely dnr0 and
d0Z0, are covered by Result 3.1(a) and Result 3.1(b), respectively.
Similarly, for a decreasing gain sequence only three of the four
scenarios described in Result 3 are possible, with a stable interior
rest point occurring if and only if d0404dn.

3.4.2. Gain sequences with two sign changes
If the gain sequence has two sign changes, its initial and final

signs coincide. Suppose they are both negative. Then, by the
preservation of initial and final signs (Property 1), the same is
true for the initial and final signs of g(x). In particular, as indicated
by Result 1, the rest point x¼0 is stable and the rest point x¼1 is
unstable. Further, the first part of the variation diminishing
property implies that the replicator dynamics has either (i) two
distinct interior rest points (which correspond to simple roots in
which g(x) crosses zero), (ii) one interior rest point (corresponding
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to a double root in which g(x) touches, but does not cross zero), or
(iii) no interior rest point. In the first of these cases g(x) has two
sign changes and the larger of the two interior rest points is stable.
In the other two cases g(x) has no sign change and, consequently,
no stable interior rest point. Considering the maximal value of g(x)
on (0,1), which we denote by g , provides a convenient way to
describe which of these three cases arises. In particular, for go0
there is no interior rest point, for g ¼ 0 there is exactly one interior
rest point, and for g40 there are two interior rest points.
Analogous reasoning can be applied for the case in which the
initial and final signs are both positive. These considerations are
summarized in the following result.

Result 4 (Gain sequences with two sign changes). Let g ¼
max0rxr1gðxÞ and g ¼min0rxr1gðxÞ. Then

1. If SðdÞ ¼ 2 and IðdÞ ¼ � the rest point x¼0 is stable and the rest
point x¼1 is unstable. Further,

(a) if go0,the replicator dynamics has no interior rest points.
(b) if g ¼ 0, then the replicator dynamics has one interior rest

point x̂ which is unstable.
(c) if g40, the replicator dynamics has one unstable rest point

xL and one stable rest point xR, satisfying 0oxLoxRo1.
2. If SðdÞ ¼ 2 and IðdÞ ¼ þ the rest point x¼0 is unstable and the

rest point x¼1 is stable. Further,
(a) If g40, the replicator dynamics has no interior rest points.
(b) If g ¼ 0, the replicator dynamics has one interior rest point

x̂ which is unstable.
(c) If go0, the replicator dynamics has one stable rest point xL

and one unstable rest point xR, satisfying 0oxLoxRo1.

It is evident from the case distinctions appearing in Result 4
that for gain sequences with two sign changes, information
beyond the one contained in the sign pattern of the gain sequence
is required to determine the number of interior rest points.
However, the additional information required takes a simple form
(namely the knowledge of the maximal, resp. minimal value of the
gain function), which is amenable to further analysis.

Remark 2. If a gain sequence has more than two sign changes,
Results 1 and 2 still provide useful information about the possible
range of dynamical scenarios, but determining which of these
scenarios arises becomes much harder than in the case of at most
two sign changes. To illustrate this, assume that SðdÞ ¼ 3 and IðdÞ ¼ þ .
We then have FðdÞ ¼ � , implying that both trivial rest points are
unstable (Result 1). Furthermore, there are either one or two stable
interior rest points (Result 2). In the second case there must exist a
single unstable interior rest point, in the first case there is either no
unstable interior rest point or one unstable interior rest point which
corresponds to a root of the gain function with multiplicity two
(Property 2.1).

3.4.3. Unimodal gain sequences
Unimodality or anti-unimodality is a simple sufficient condition

ensuring that a gain sequence has at most two sign changes.
Furthermore, a complete classification of the possible dynamic scenar-
ios is easily obtained. Here we demonstrate these claims for the
unimodal case; the argument (and result) for the anti-unimodal case is
analogous.

Our argument relies on the identity

g0ðxÞ ¼ nBn�1ðx;ΔdÞ; ð5Þ
which is a classical result in approximation theory, known as the
derivative property of polynomials in Bernstein form (see e.g.

Lorentz, 1986; DeVore and Lorentz, 1993; Farouki, 2012). By (5) the
derivative g0ðxÞ is proportional to a Bernstein polynomial with
coefficients Δd. We may thus apply Properties 1 and 2 to the
relationship between the sign pattern of Δd and the roots and sign
pattern of g0ðxÞ. Recalling that for a unimodal gain sequence Δd has
a single sign change from positive to negative, it follows that
unimodality of the gain sequence implies unimodality of the gain
function. Moreover, applying the first part of the variation dimin-
ishing property, there exists a unique 0o x̂o1 satisfying the first
order condition g0ðx̂Þ ¼ 0. Unimodality of g(x) implies that x̂ is the
unique solution to the problem max0rxr1gðxÞ appearing in the
statement of Result 4. In particular, we have g ¼ gðx̂Þ.

It is clear that a unimodal gain function can have at most one
sign change in its increasing part (which then must be from
negative to positive) and at most one sign change in its decreasing
part (which then must be from positive to negative). Moreover, a
sign change in the increasing part occurs if and only if
gð0Þo0ogðx̂Þ and a sign change in the decreasing part occurs if
and only if gð1Þo0ogðx̂Þ. Combining these observations yields
the following result, refining Results 3 and 4 for the unimodal case.

Result 5 (Unimodal gain sequences). If the gain sequence is unim-
odal, there exists a unique 0o x̂o1 solving the equation g0ðx̂Þ ¼ 0.
Moreover,

1. If gðx̂Þo0, then the replicator dynamics has no interior rest
point. The rest point x¼0 is stable and the rest point x¼1 is
unstable.

2. If gðx̂Þ ¼ 0, then x̂ is the unique interior rest point of the
replicator dynamics. The rest point x¼0 is stable and the rest
points x̂ and x¼1 are unstable.

3. If gðx̂Þ40 holds, thenone of the following four cases applies:
(a) If minfd0; dngZ0, then the replicator dynamics has no

interior rest point. The rest point x¼0 is unstable and the
rest point x¼1 is stable.

(b) If maxfd0; dngo0, then the replicator dynamics has two
interior rest points satisfying xLo x̂oxR. The rest points
x¼0 and xR are stable, whereas the rest points xL and x¼1
are unstable.

(c) If d0o0 and dnZ0, then the replicator dynamics has a
unique interior rest point xno x̂. The rest points x¼0 and
x¼1 are stable, whereas the rest point xn is unstable.

(d) If d0Z0 and dno0, then the replicator dynamics has a
unique interior rest point xn4 x̂. The rest point xn is stable,
whereas the rest points x¼0 and x¼1 are unstable.

Remark 3. Using the derivative property of polynomials in Bernstein
form, it can be shown that all the properties of gain sequences
mentioned at the end of Section 3.1 are inherited by the gain
function (e.g., if the gain sequence is increasing, so is the gain
function). The argument for the preservation of anti-unimodality is
analogous to the one we have given for the preservation of unim-
odality. The other results are well known properties of Bernstein
polynomials, namely preservation of monotonicity, and preservation
of convexity (see Lorentz, 1986; Farouki, 2012). Seemingly unaware of
these properties, Motro (1991) proves preservation of monotonicity
and Bach et al. (2006) prove preservation of concavity (which is
equivalent to preservation of convexity).

4. Public goods games

In this section, we apply Results 3–5 to two classes of public
goods games, subsuming many of the models encountered in the
literature of the evolution of cooperation and collective action.
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4.1. Gain sequences for public goods games

In a public goods game, playing A means to cooperate (i.e. to
contribute to the creation or maintenance of a public good) and
playing B means to defect (i.e. to free ride on the contributions of
others). Contributing entails a cost ckZ0 to the focal cooperator,
where k is the number of other cooperators. Defectors bear no
cost. All players obtain a benefit rjZ0 from the public good, where
j is the total number of cooperators in the group. Note that for a
focal cooperator j¼ kþ1, while for a focal defector j¼k. With these
assumptions, the payoff sequences for a public goods game can
thus be written as

ak ¼ rkþ1�ck; k¼ 0;1;…;n

and

bk ¼ rk; k¼ 0;1;…;n

so that the gain sequence is given by

dk ¼Δrk�ck; k¼ 0;1;…;n: ð6Þ
As it is generally considered in the literature, we assume that

the benefit sequence r¼ ðr0;…; rnþ1Þ is increasing and the cost
sequence c¼ ðc0;…; cnÞ is not equal to zero.

If no further assumptions are imposed on the cost and benefit
sequence, it is clear from (6) that any d can arise as the gain
sequence of a public goods game. Consequently, to obtain insights
into the evolutionary dynamics of public goods games going
beyond the ones summarized in Results 1 and 2, additional
assumptions on the benefit or the cost sequence are required. In
this light, it is not surprising that public goods games usually
studied in the biological literature fall into one of the two classes
that we discuss in the following subsections.

4.2. Threshold games

If there exists an integer m with 1rmrnþ1 and a constant
r40 such that the benefit sequence satisfies rj¼0 if jom and
rj ¼ r if jZm, we say that a public goods game is a threshold game.
This class of games describes situations in which the public good is
a “step good” in the sense of Hardin (1982, p. 55): at least m
cooperators are required to provide a public good for all group
members, but the number of cooperators beyond the threshold m
does not increase the benefit received by the players. Examples of
such threshold games abound in the theoretical literature of the social
sciences (Hardin, 1982; Taylor and Ward, 1982; Diekmann, 1985;
Sugden, 1986; Weesie and Franzen, 1998; Höffler, 1999; Herold, 2012)
and evolutionary biology (Dugatkin, 1990; Bach et al., 2006; Zheng
et al., 2007; Archetti, 2009; Souza et al., 2009), and are sometimes
referred to as volunteer0s dilemmas or multi-player snowdrift games.

For threshold games (6) reduces to

dk ¼
�ck if kom�1
r�cm�1 if k¼m�1
�ck if k4m�1

8><
>: ð7Þ

It is obvious that the gain sequence d has no sign change when
rrcm�1 and that in this case defection is a dominant strategy.
As illustrated in Fig. 1 and discussed below, in the other cases the
sign pattern of the gain sequence depends on the location of the
threshold m.

4.2.1. Threshold m¼1
Threshold games with m¼1 represent situations in which only

one cooperator is required for the provision of the public good.
Such games have been considered by Dugatkin (1990), Weesie and
Franzen (1998), Zheng et al. (2007), and Souza et al. (2009) for the
particular case of a cost sequence satisfying ck ¼ c=ðkþ1Þ for some
constant c40, so that the cost to cooperators is inversely propor-
tional to the total number of cooperators in the group. These
authors have shown by algebraic manipulations or numerical
simulations that for such games the replicator dynamics has
at most one interior stable rest point. Archetti (2009) shows
the same result for a cost sequence satisfying ck ¼ c for some
constant c40.

Considering the sign pattern of the gains from switching not
only recovers this result in a simpler way, but also extends it to any
strictly positive cost sequence c. If r4c0, the gain sequence given
in (7) has exactly one sign change and IðdÞ ¼ þ , so that Result 3.2
(b) establishes the existence of a single interior stable rest point
0oxno1 and the instability of the trivial rest points (see Fig. 1(a)).
If rrc0, Result 3.1(a) applies. Hence, there is no interior rest point
and x¼0 is the unique stable rest point.

4.2.2. Threshold m¼ nþ1
Recalling that N¼ nþ1 is group size, threshold games with

m¼ nþ1 represent situations in which the cooperation of all
group members is required to produce the public good. For the
case m¼ nþ1¼ 2 and a cost sequence satisfying 0oc0 ¼ c1or,
Souza et al. (2009) observe that such a threshold game corre-
sponds to a two-player stag hunt game (Skyrms, 2004) in which
both trivial rest points are stable and there is a unique, unstable
interior rest point. It is easy to see that this result holds more
generally. Indeed, provided that the cost sequence is strictly
positive and satisfies r4cn, the gain sequence given in (7) is
characterized by SðdÞ ¼ 1 and IðdÞ ¼ � . Then, by Result 3.2(a),
it follows that the qualitative dynamics of the two-player stag hunt
are recovered for every threshold game withm¼ nþ1 (see Fig. 1(b)).
The case rrcn is covered by Result 3.1(a).

0

0 1x
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0 x 1
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0 x x 1
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Fig. 1. Gain sequence d (squares, dotted line; top axis), and corresponding gain function g(x) (solid line; bottom axis) and phase portrait (circles, arrows) for threshold games
given by (7) and (8) with N¼7, r¼2, c¼1, and (a) m¼1 (see Section 4.2.1), (b) m¼N ¼ nþ1 (see Section 4.2.2), or (c) m¼4 (see Section 4.2.3). Panel d illustrates the same
game as in panel c, but with c¼3 instead of c¼1.
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4.2.3. Threshold 1omonþ1
Souza et al. (2009) studied a threshold game with 1omonþ1

for a cost sequence of the form:

ck ¼
c=m if kom�1
c=ðkþ1Þ if kZm�1

(
ð8Þ

for some constant c40. Their main theoretical result (Souza et al.,
2009, Theorem 1) uses an ingenious but rather involved argument
to demonstrate that in this example there exists c40 and
0oxo1 such that (i) if coc , the replicator dynamics has two
interior rest points xLoxoxR where xL is unstable and xR is
stable (see Fig. 1.c), (ii) if c¼ c, the replicator dynamics has a
unique rest point x (which is unstable), and (iii) if c4c , the
replicator dynamics has no interior rest point (see Fig. 1(d)).2

In Appendix B we prove that the same result holds for any cost
sequence of the form ck ¼ c � γk, where the strictly positive, but
otherwise arbitrary, sequence γ describes the shape of the cost
sequence and, as in the example considered by Souza et al. (2009),
c shifts the level of the cost sequence. Our result follows, in
essence, from two observations. The first is that for every thresh-
old game with 1omonþ1 and strictly positive cost sequence
satisfying 0ocm�1or the gain sequence has two sign changes
and a negative initial sign, so that the rest points of the replicator
dynamics are described by Result 4.1. The second observation is
that the maximal value of the gain function g is strictly decreasing
in the cost parameter c.

Threshold games with 1omonþ1 have also been considered
by Bach et al. (2006), Archetti (2009), and Archetti and Scheuring
(2011). These authors assume a cost sequence satisfying ck ¼ c for
some constant c40, implying that these games fall in the class of
constant cost games with sigmoid benefit functions that we
discuss in Section 4.3.3.

4.2.4. Further threshold games
In economics, Höffler (1999) and Herold (2012) have studied

evolutionary dynamics of threshold games which differ from the
biological threshold games considered above in that cooperators
pay a cost only if the threshold for the successful provision of the
public good is reached. In such cases the gain sequence has the
form

dk ¼
0 if kom�1
r�cm�1 if k¼m�1
�ck if k4m�1

8><
>: ð9Þ

and thus possesses at most one sign change (see Fig. 2). For
r4cm�1 and 1rmonþ1, this gain sequence satisfies IðdÞ ¼ þ
and SðdÞ ¼ 1. Applying Result 3.2(b) then yields a simple direct
proof of the main result obtained by Höffler (1999, Proposition 1)
and Herold (2012, Proposition 1) for this class of games, namely
that there exists a unique stable interior rest point.3

4.3. Constant cost games

If there exists a constant c40 such that ck ¼ c holds for k¼0,…,
n we say that a public goods game is a constant cost game. Such
games have been studied, among others, by Motro (1991),
Szathmáry (1993), Bach et al. (2006), Hauert et al. (2006),
Pacheco et al. (2009), and Archetti and Scheuring (2011).

In the case of a constant cost game, Eq. (6) reduces to

dk ¼Δrk�c; k¼ 0;1;…;n: ð10Þ
It is then immediate that the gain sequence has no sign change
(and hence no interior rest point) if cZmaxk ¼ 0;…;nΔrk or
mink ¼ 0;…;nΔrkZc holds. It follows from Result 3.1 that in the
former case x¼0 and in the latter case x¼1 is the unique stable
rest point. In all other cases, that is whenever the inequality

min
k ¼ 0;…;n

Δrkoco max
k ¼ 0;…;n

Δrk ð11Þ

holds, the gain sequence has at least one sign change.
In the following, we consider three different kinds of constant

cost games, arising from three different assumptions on the shape
of the benefit sequence: linear benefits (Section 4.3.1), convex or
concave benefits (Section 4.3.2) and sigmoid benefits (Section
4.3.3). See Fig. 3 for a graphical illustration of these different
constant cost games.

4.3.1. Linear benefits
The familiar linear public goods game is a constant cost game in

which the benefit sequence is given by rj ¼ jr=ðnþ1Þ (Sigmund, 2010).
The interpretation is that r40 is the amount of the public good
produced by each cooperator and that this amount is split evenly
among the N¼ nþ1 members of the group. For such a game, we have
Δrk ¼ r=ðnþ1Þ, so that the gain sequence is dk ¼ r=ðnþ1Þ�c, which is
a constant independent of k. Hence d has no sign change. Making the
standard assumption ro ðnþ1Þc, we have IðdÞ ¼ � , so that there are
no interior rest points and x¼0 is the unique stable rest point (see
Fig. 3(a)). This conclusion is, of course, well-known.

4.3.2. Convex or concave benefits
Convexity of the benefit sequence (Δ2rZ0) indicates that the

incremental benefit Δrk of a further contributor is increasing in the
number of other contributors k that are already present in the
group. Using (10) to obtain

Δdk ¼ Δ2rk; k¼ 0;1;…;n�1; ð12Þ
it is apparent that the gain sequence d is increasing. As discussed
in Section 3.4.1 it follows that (11) reduces to Δr0ocoΔrn.
Furthermore, if these inequalities hold, Result 3.2(a) implies that
there is a unique interior rest point which is unstable, whereas
both trivial rest points are stable (see Fig. 3.b). Similarly, when the
benefit sequence is concave (Δ2rr0), (11) reduces to

0

0 1 2 3 4 5 6 7 8 9

0 x* 1

Fig. 2. Gain sequence d (squares, dotted line; top axis), and corresponding gain
function g(x) (solid line; bottom axis) and phase portrait (circles, arrows) for the
threshold game given by (9) with N¼10, r¼2, m¼4, and ck ¼ 1=4 for all kZ3.

2 Souza et al. (2009) express their results in terms of the cost-benefit ratio c=r.
The difference is of no importance as time can always be rescaled to ensure r¼1.

3 Proposition 2 in Höffler (1999), which considers the case m¼ nþ1, is implied
by our Result 3.1(b). Herold also considers the case in which cooperators only pay a
cost if the threshold is not reached. His main result for this case (Herold, 2012,
Proposition 2) is implied by our Result 3.2(a).
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ΔrnocoΔr0 and if these inequalities hold, Result 3.2(b) implies
that there is a unique interior rest point which is stable, whereas
both trivial rest points are unstable (see Fig. 3(c)).

The argument we have just given recovers the main results from
Motro (1991). A simple illustration of a constant cost game with
convex or constant benefits is provided by the model of synergy and
discounting considered in Hauert et al. (2006, Section 2.1). These
authors consider a constant cost game with benefit function:

rj ¼
r

nþ1
ð1þwþ…wj�1Þ; ð13Þ

where r40 and w40 are parameters. For this specification we have
Δrk ¼ rwk=ðnþ1Þ. Forw41 this benefit sequence is convex, whereas
forwo1 it is concave. The casew¼1 is the linear public goods game.
We observe that the classification obtained in Section 2.2 of Hauert
et al. (2006) corresponds to the one obtained from a straightforward
application of our Result 3.

4.3.3. Sigmoid benefits
A benefit sequence is sigmoid (or S-shaped) when Δ2r has

exactly one sign change from þ to � , i.e. the benefit sequence is
first convex, then concave. Examples of sigmoid benefit sequences
are the threshold benefit sequences with 1omonþ1 considered
in Section 4.2.3, the “benefit function with a hump” proposed in
Szathmáry (1993), and the threshold-linear and logistic benefit
sequences studied respectively by Pacheco et al. (2009) and
Archetti and Scheuring (2011).

In this case it is immediate from (12) that the gain sequence of a
constant cost game with sigmoid benefits is unimodal. Consequently,
the characterization of the different types of dynamics that can arise
in such games involves nothing more than inserting the values
dk ¼Δrk�c into our Result 5 (see Fig. 3.d for a particular example).
The results of this exercise have been published by Archetti (2013).4

Sigmoid benefit sequences generalize the benefit sequences
considered in Bach et al. (2006, Proposition 7), who not only
assume that Δ2r has a single sign change from þ to � , but, in
addition, require Δ2r to be decreasing. Using these assumptions,
Bach et al. (2006) establish the existence of a cn4maxfΔr0;Δrng
such that for cocn the replicator dynamics has two interior rest
points (the larger of which is stable), whereas for c¼ cn there is a
unique (unstable) interior rest point and for c4cn there is none.
As the gain sequence (and hence the gain function and g) for
constant cost games is linearly decreasing in c, it is immediate
from Result 5 that the same conclusion obtains for all sigmoid
benefit sequences.

5. Other multi-player games

Up to this point our examples have considered public goods
games. Here we consider two examples of other multi-player
games, illustrating how focusing on the shape of the gain sequence
obviates the need for a more involved analysis. Of course, further
examples could be analyzed along similar lines. For instance, it is
straightforward to show that in the “shared reward dilemma”
considered by Cuesta et al. (2008) the gain sequence has at most
two sign changes, so that we can recover their case distinctions by
applying our results.

5.1. Repeated N-person prisoner0s dilemma

Joshi (1987), Boyd and Richerson (1988) and van Segbroeck
et al. (2012) considered a repeated N-person prisoner0s dilemma
with two possible strategies. Reciprocators (A-strategists) contri-
bute to the public good in the first round and then in each
subsequent round if at least m individuals (including the focal
individual) contributed to the public good in the previous move.
Defectors (B-strategists) never contribute to the public good.
Payoffs in each round depend on the number of contributors as
in the linear public goods game considered in Section 4.3.1.

0 0 0 0

0
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0x 1 x 1

0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 x x 1

Fig. 3. Examples of constant cost games with N ¼ nþ1¼ 9 and c¼ 1=2 for different benefit sequences. The first row shows the benefit sequence rj; the second row shows the
gain sequence d (squares, dotted line; top axis), and corresponding gain function g(x) (solid line; bottom axis) and phase portrait (circles, arrows). (a) Linear benefits (see
Section 4.3.1) with r¼5 and c¼1. (b) Convex benefits (see Section 4.3.2) as given by (13) with r¼5 and w¼1.2. (c) Concave benefits (see Section 4.3.2) as given by (13) with
r¼20 and w¼0.8. (d) Sigmoid benefits (see Section 4.3.3) as studied by Archetti and Scheuring (2011) with rj ¼ r=½1þexpð�sðj�mÞÞ�, r¼20, m¼4, and s¼1.5.

4 Archetti (2013) ignores most of the cases in which a weak inequality occurs in
Result 5 and neglects to impose the proper sign change condition required for
unimodality, but these shortcomings are easily fixed.
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The gain sequence for this model is easily derived by consider-
ing the first round and the subsequent rounds separately. In the
first round, the gain if switching from B to A is r=ðnþ1Þ�co0. In
each subsequent round, the gain from switching is zero if kom�1
(because all players defect), r=ðnþ1Þ�c if k4m�1 (because the
other reciprocators cooperate no matter whether the focal indivi-
dual contributes or not), and mr=ðnþ1Þ�c if k¼m�1 (because in
this case the contribution of the focal individual in the first round
is pivotal in determining the subsequent behavior of reciproca-
tors). Setting

~c ¼ c�r=ðnþ1Þ40;

and

~r ¼ ðm�1Þr=ðnþ1Þ;
the gain sequence can be written as

dk ¼
� ~c if kom�1
T ~r�ðTþ1Þ~c if k¼m�1
�ðTþ1Þ~c if k4m�1

8><
>: ; ð14Þ

where T40 denotes the expected number of rounds after the first
one. From (7) and (14) it is apparent that the model is equivalent
to a threshold game with (i) the benefit T ~r arising if and only if at
least m reciprocators are present and (ii) costs given by ck ¼ ~c if
kom�1 and ck ¼ ðTþ1Þ~c otherwise. In particular, the results for
the cases m¼1 and m¼ nþ1 are identical to the ones discussed in
Sections 4.2.1 and 4.2.2, respectively. Moreover, when T ~r�ðTþ1Þ~c
is negative, it is immediate that the gain sequence is negative and
Result 3.1(a) applies.

In the remaining case, satisfying 1omonþ1 and T ~r�
ðTþ1Þ~c40, it follows from (14) that the only non-zero elements
of Δd are Δdm�240 and Δdm�1o0. Consequently, the gain
sequence is unimodal and Result 5 applies with maxfd0; dngo0
to characterize the three different possible dynamical regimes.
Which of these regimes arises depends on the value of g ¼ gðx̂Þ
(see Fig. 4 for an example of the case g40). As in all applications
of Results 4 and 5, a key question is whether this value can be
linked to the parameters of the model.

For the parameter T this question can be answered by using the
linearity of the Bernstein operator Bn to write the gain function as

gðxÞ ¼ ThðxÞ� ~c; ð15Þ
where hðxÞ ¼ Bnðx; eÞ and the sequence e is given by

ek ¼
0 if kom�1
~r� ~c if k¼m�1
� ~c if k4m�1

8><
>: :

It follows from (15) that the critical value x̂ satisfying the first
order condition g0ðx̂Þ ¼ 0 is independent of T. Further, because

IðeÞ ¼ þ , it follows from the preservation of initial signs that
hðx̂Þ40 holds. This in turn implies from (15) that gðx̂Þ is strictly
increasing in T and that the equation T̂ ¼ ~c=hðx̂Þ identifies the
critical value of T at which gðx̂Þ ¼ 0 holds. Hence, we obtain the
same conclusions as van Segbroeck et al. (2012) by an application
of Result 5. Namely, (i) for To T̂ there is no interior rest point,
(ii) for T ¼ T̂ the replicator dynamics has a single, unstable interior
rest point, and (iii) for T4 T̂ two interior rest points emerge.

5.2. Constant cost game with different benefit sequences
for cooperators and defectors

Hauert et al. (2006, Section 2.3.2) consider an interesting
extension of constant cost games by allowing for the possibility
that cooperators and defectors might obtain different benefits, say
rAj and rBj , when there are j cooperators in the group (see Fig. 5).
The counterpart to (12) is then Δdk ¼ΔrAkþ1�ΔrBk . For the parti-
cular choice of benefit sequences in Hauert et al. (2006), given by
(13) for rAj and

rBj ¼
r

nþ1
ð1þv1þ…vj�1Þ;

this reduces to

Δdk ¼
r

nþ1
ðwkþ1�vkÞ; ð16Þ

where r40, v40 and w40 are parameters and N¼ nþ1 is
group size.

0

0 1 2 3 4 5 6 7 8 9

0 xL xR 1

Fig. 4. Gain sequence d (squares, dotted line; top axis), and corresponding gain function
g(x) (solid line; bottom axis) and phase portrait (circles, arrows) for the repeated N-
person prisoner0s dilemma given by (14) with N¼10, r¼7, c¼2, T¼5, and m¼6.
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Fig. 5. Gain sequence d (squares, dotted line; top axis), and corresponding gain function g(x) (solid line; bottom axis) and phase portrait (circles, arrows) of the game
considered in Section 5.2 for N¼7 and different values of the parameters w, v, r and c. (a) w¼1.3, v¼1.2, r¼1, c¼3. (b) w¼0.6, v¼0.57, r¼2, c¼1. (c) w¼1.3, v¼1.4, r¼2,
c¼3.4. (d) w¼0.75, v¼0.6, r¼1.55, c¼1.25.
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Hauert et al. (2006) state that “only v¼w allows for an
analytical solution […] but in general there are […] up to N�1
equilibria [rest points] in (0,1).” Here we refine this statement and
show that, as conjectured by Cuesta et al. (2007), for all group
sizes the maximum number of interior rest points is two. To do so,
we observe that Δdk40 holds if and only if

w4
v
w

� �k
:

Since the right side of this inequality is monotonic in k, Eq. (16)
implies the following exhaustive case distinction:

1. if wZ1 and wnZvn�1 holds, then the gain sequence is
increasing and there is at most one interior rest point (see
Fig. 5(a)).

2. if wr1 and wnrvn�1 holds, then the gain sequence is
decreasing and there is at most one interior rest point (see
Fig. 5(b)).

3. if w41 and wnovn�1 holds, then the gain sequence is
unimodal and there are at most two interior rest points (see
Fig. 5(c)).

4. if wo1 and wn4vn�1 holds, then the gain sequence is anti-
unimodal and there are at most two interior rest points (see
Fig. 5(d)).

6. Discussion

Bernstein polynomials were first proposed more than a century
ago by Bernstein (1912) in order to provide a constructive proof of
Weierstrass0s approximation theorem (DeVore and Lorentz, 1993).
More recently, because of their many shape-preserving properties,
polynomials in Bernstein form have also proven to be extremely
useful in the field of computer aided geometric design (Yamaguchi
and Yamaguchi, 1988; Farin and Hoschek, 2002; Prautzsch et al.,
2002). Here we have made the case for utilizing the shape-
preserving properties of Bernstein polynomials in the analysis of
multi-player matrix games. In particular, we have used these
properties to show how key insights into the evolutionary
dynamics of multi-player matrix games can be obtained by study-
ing the sign pattern of the gains from switching.

The properties of Bernstein polynomials we have used in this
paper are certainly not the only ones of relevance for the
theoretical analysis of collective action problems. For instance,
both the effects of changes in the group size (studied previously in
Motro, 1991) and the group size distribution (studied previously in
Peña, 2012) on the evolutionary dynamics can be analyzed by
making use of the theory of polynomials in Bernstein form. Our
methods can also be extended to structured populations and used
to analyze multi-player matrix games played between relatives.
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Appendix A. Proof of Result 1

We show the result IðgÞ ¼ IðdÞ; the argument that the final signs
coincide is analogous. Using the derivative property of polynomials in
Bernstein form (cf. Eq. (5)) recursively, for 0rmrn the mth

derivative of the gain function can be written as (Farouki, 2012)

gðmÞðxÞ ¼ nðn�1Þ…ðn�mþ1ÞBn�mðx;ΔmdÞ; ðA:1Þ
where (with the obvious iterative definition) Δmd is the mth forward
difference of the sequence d. Evaluating (A.1) at x¼0 we obtain

gðmÞð0Þ ¼ nðn�1Þ…ðn�mþ1ÞΔmd0: ðA:2Þ
Now, let ℓ be the lowest index k such that dℓa0. Then Δmd0 ¼ 0
holds for all moℓ and Δℓd0 ¼ dℓ. Eq. (A.2) then implies that
gðmÞð0Þ ¼ 0 for all moℓ and that the sign of gðℓÞð0Þ coincides with
the sign of dℓ which, by definition, is the initial sign of d. A standard
Taylor-series argument as given in Bach et al. (2006, Proof of
Proposition 4) demonstrates that the initial sign of g coincides with
the sign of dℓ, finishing the proof.

Appendix B. Proof of the generalization of Theorem 1 from
Souza et al. (2009)

For any cZ0 let

gðx; cÞ ¼ ∑
n

k ¼ 0

n
k

� �
xkð1�xÞn�kdkðcÞ; ðB:1Þ

where

dkðcÞ ¼
�cγk if kom�1
r�cγm�1 if k¼m�1
�cγk if k4m�1

8><
>: ðB:2Þ

and γ¼ ðγ0;…; γnÞ is a given, strictly positive sequence. Let
gðcÞ ¼max0rxr1gðx; cÞ denote the corresponding maximal value
of the gain function.

For 0ocor=γm�1 the gain sequence given in (B.2) satisfies
IðdðcÞÞ ¼ � and SðdðcÞÞ ¼ 2, so that the rest points of the replicator
dynamics are described by Result 4.1.

From (B.1) and (B.2) the function gðx; cÞ is continuous. From the
maximum theorem (Sundaram, 1996, Theorem 9.14) this ensures
continuity of gðcÞ. Because all the Bernstein coefficients dk(c) are
strictly decreasing in c, all the summands appearing in (B.1) are
strictly decreasing in c, implying that gðx; cÞ is strictly decreasing in
c. This monotonicity property obviously carries over to gðcÞ.

Consider the Bernstein coefficients as given in (B.2). If c¼0, the
only non-zero coefficient is dm�1ð0Þ ¼ r40. It is then immediate
from (B.1) that gðx;0Þ40 holds for all 0oxo1, ensuring gð0Þ40.
If c¼ r=γm�1, we have dkðcÞr0 with strict inequality holding in all
cases but k¼m�1. From (B.1) this implies gðx; r=γm�1Þo0 for all
0rxr1, ensuring gðr=γm�1Þo0.

Because gð0Þ40 and gðr=γm�1Þo0 hold and gðcÞ is continuous
the intermediate value theorem implies that there exists
0ocor=γm�1 satisfying gðcÞ ¼ 0. By monotonicity of gðcÞ it
follows that gðcÞo0 holds for c4c and gðcÞ40 holds for coc.
The generalized version of Theorem 1 in Souza et al. (2009) then
follows from our Result 4.1 – except that it remains to establish the
existence of 0oxo1 such that the interior rest points satisfy
xLoxoxR for all 0ococ. Towards this end let x be a solution to
the problem max0rxr1gðx; cÞ. As gð0; cÞo0 and gð1; cÞo0 holds,
we have 0oxo1. As gðx; cÞ is strictly decreasing in c, we have
gðx; cÞ40 for all 0ococ . In conjunction with gð0; cÞo0 and
gð1; cÞo0 this implies that gðx; cÞ has at least one root in the
interval ð0; xÞ and at least one root in the interval ðx;1Þ.
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