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H I G H L I G H T S

� We study n-player games in spatially structured populations.
� Such games are mathematically equivalent to transformed games in well-mixed populations.
� We illustrate our theory with an application to the evolution of collective action.
� Results depend on the kind of collective good, its economies of scale, and scaled relatedness.
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a b s t r a c t

Many models proposed to study the evolution of collective action rely on a formalism that represents
social interactions as n-player games between individuals adopting discrete actions such as cooperate
and defect. Despite the importance of spatial structure in biological collective action, the analysis of n-
player games games in spatially structured populations has so far proved elusive. We address this
problem by considering mixed strategies and by integrating discrete-action n-player games into the
direct fitness approach of social evolution theory. This allows to conveniently identify convergence stable
strategies and to capture the effect of population structure by a single structure coefficient, namely, the
pairwise (scaled) relatedness among interacting individuals. As an application, we use our mathematical
framework to investigate collective action problems associated with the provision of three different
kinds of collective goods, paradigmatic of a vast array of helping traits in nature: “public goods” (both
providers and shirkers can use the good, e.g., alarm calls), “club goods” (only providers can use the good,
e.g., participation in collective hunting), and “charity goods” (only shirkers can use the good, e.g.,
altruistic sacrifice). We show that relatedness promotes the evolution of collective action in different
ways depending on the kind of collective good and its economies of scale. Our findings highlight the
importance of explicitly accounting for relatedness, the kind of collective good, and the economies of
scale in theoretical and empirical studies of the evolution of collective action.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Collective action occurs when individuals work together to
provide a collective good (Olson, 1971). Examples abound in the
social and natural sciences: humans collectively build houses,
roads, walls, and mobilize armies to make war; bacteria secrete
enzymes that benefit other bacteria; sterile ant workers build the
nest and raise the brood of the queen; lions work together to catch

large game. Yet cooperation of this kind poses a collective action
problem: if individual effort is costly there is an incentive to
reduce or withdraw one's effort, but if enough individuals follow
this logic the collective good will not be provided.

Much research in the social sciences has identified mechanisms
for solving collective action problems, including privatization and
property rights, reciprocity in repeated interactions, and institu-
tions (Hardin, 1982; Sugden, 1986; Taylor, 1987; Ostrom, 2003).
The principles behind these mechanisms have also been explored
in evolutionary biology (Boyd and Richerson, 1988; Noë and
Hammerstein, 2001; Strassmann and Queller, 2014) where it has
been further emphasized that individual effort in cooperation
should also increase as the relatedness between interactants
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increases (Hamilton, 1964). As social interactions often occur
between relatives (because of spatial structure, kin recognition,
or both; Rousset, 2004; Bourke, 2011) it is thought that relatedness
plays a central role for solving collective action problems in
biology. In particular, relatedness has been identified as the main
mechanism of conflict resolution in the fraternal major transitions
in evolution, i.e., those resulting from associations of relatives,
such as the transitions from unicellularity to multicellularity, or
from autarky to eusociality (Queller, 2000).

Mathematical models of collective action in spatially structured
populations or between relatives often assume that strategies are
defined in a continuous action space, such as effort invested into the
provision of a public good or level of restrain in resource exploitation
(Frank, 1995; Foster, 2004; Lehmann, 2008; Frank, 2010; Cornforth
et al., 2012). This allows for a straightforward application of the
direct fitness method (Taylor and Frank, 1996; Rousset, 2004) to
investigate the effects of relatedness on the evolution of collective
action. Contrastingly, many evolutionary models of collective action
between unrelated individuals (Boyd and Richerson, 1988; Dugatkin,
1990; Motro, 1991; Bach et al., 2006; Hauert et al., 2006; Pacheco et
al., 2009; Archetti and Scheuring, 2011; Sasaki and Uchida, 2014)
represent interactions as n-player games in discrete action spaces
(e.g., individuals play either “cooperate” or “defect”). These models
can be mathematically involved, as identifying polymorphic equili-
bria might require solving polynomial equations of degree n�1, for
which there are no general analytical solutions if nZ6.

Here we integrate two-action n-player mixed strategy game-
theoretic models into the direct fitness method of social evolution
theory (Taylor and Frank, 1996; Rousset, 2004), which allows for
studying the effect of spatial structure on convergence stability by
using pairwise relatedness. Several shape-preserving properties of
polynomials in Bernstein form (Farouki, 2012) allow us to characterize
convergence stable strategies with a minimum ofmathematical effort.
Our framework delivers tractable formulas for games between
relatives which differ from the corresponding formulas for games
between unrelated individuals only in that “inclusive payoffs” (the
payoff to self plus relatedness times the sum of payoffs to others)
rather than solely standard payoffs must be taken into account. For a
large class of games, convergence stable strategies can be identified
by a straightforward adaptation of existing results for games between
unrelated individuals (Peña et al., 2014).

As an application of our modeling framework, we study the
effects of relatedness on the evolution of collective action under
different assumptions on the kind of collective good and its
economies of scale, thus covering a wide array of biologically
meaningful situations. To this aim, we distinguish between three
kinds of collective goods: (i) “public goods” where all individuals in
the group can use the good, e.g., alarm calls in vertebrates (Searcy
and Nowicki, 2005) and the secretion of diffusible beneficial
compounds in bacteria (Griffin and West, 2004; Gore et al., 2009;
Cordero et al., 2012); (ii) “club goods” where only providers can use
the good (Sandler and Tschirhart, 1997), e.g., cooperative hunting
(Packer and Ruttan, 1988) where the benefits of a successful hunt go
to individuals joining collective action but not to solitary indivi-
duals; and (iii) “charity goods”where only nonproviders can use the
good, e.g., eusociality in Hymenoptera (Bourke and Franks, 1995)
where sterile workers provide a good benefiting only queens.

For all three kinds of goods, we consider three classes of
production functions giving the amount of good created as a
function of the total level of effort and hence describing the
associated economies of scale: (i) linear (constant returns to scale),
(ii) decelerating (diminishing returns to scale), and (iii) accelerating
(increasing returns to scale). Although linear production functions
are often assumed because of mathematical simplicity, collective
goods can be characterized by either decelerating or accelerating
functions, so that the net effect of several individuals behaving

socially is more or less than the sum of individual effects. In other
words, social interactions can be characterized by (either positive or
negative) synergy. For instance, enzyme production in microbial
collective action is likely to be nonlinear, as in the cases of invertase
hydrolyzing disaccharides into glucose in the budding yeast Sac-
charomyces cerevisiae (Gore et al., 2009) or virulence factors
triggering gut inflammation in the pathogen Salmonella typhimur-
ium (Ackermann et al., 2008). In the former case, the relationship
between growth rate and glucose concentration in yeast has been
reported to be decelerating, i.e., invertase production has diminish-
ing returns to scale (Gore et al., 2009, Fig. 3c); in the latter case, the
relationship between the level of expression of virulence factors
and inflammation intensity appears to be accelerating, i.e., it
exhibits increasing returns to scale (Ackermann et al., 2008, Fig. 2d).

We show that the effect of relatedness on the provision of
collective goods, although always positive, critically depends on
the kind of good (public, club, or charity) and on its economies of
scale (linear, decelerating or accelerating production functions).
Moreover, we show that relatedness and economies of scale can
interact in nontrivial ways, leading to patterns of frequency
dependence and dynamical portraits that cannot arise when
considering any of these two factors in isolation. We discuss the
predictions of our models, their implications for empirical and
theoretical work, and their connections with the broader literature
on the evolution of helping.

2. Model

2.1. Population structure

We consider a homogeneous group-structured population with
a finite number of groups each containing an identical number of
haploid individuals. Spatial structure may follow a variety of
schemes, including the island model of dispersal (Wright, 1931),
the isolation-by-distance model (Malécot, 1975), the haystack
model (Maynard Smith, 1964), models where groups split into
daughter groups and compete against each other (Gardner and
West, 2006; Traulsen and Nowak, 2006; Lehmann et al., 2007b),
and evolutionary graphs (Ohtsuki et al., 2006; Taylor et al., 2007;
Lehmann et al., 2007a). We leave particular details of the life
history (e.g., whether generations are overlapping or non-over-
lapping) and population structure (e.g., the dispersal distribution)
unspecified as they do not affect our analysis. All that is required is
that the “selection gradient” can be written in a form proportional
to (4) below. For this, we refer the interested reader to Rousset
(2004), Lehmann and Rousset (2010) and Van Cleve (2015).

2.2. Social interactions

Within groups, individuals participate in an n-player game with
two available actions: A (e.g., “cooperate”) and B (e.g., “defect”).
We denote by ak the payoff to an A-player when k¼ 0;1;…;n�1
co-players choose A (and hence n�1�k co-players choose B).
Likewise, we denote by bk the payoff to a B-player when k co-
players choose A. These payoffs can be represented as a table of
the form:

Opposing A-players 0 1 … k … n�1

Payoff to A a0 a1 … ak … an�1

Payoff to B b0 b1 … bk … bn�1

Individuals implement mixed strategies, i.e., they play A with
probability z (and B with probability 1�z). The set of available
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strategies is then the interval ½0;1�. At any given time only two
strategies are present in the population: z and zþδ. Denoting by z�
the strategy of a focal individual and by zℓð�Þ the strategy of its ℓ-th
co-player, the expected payoff π to the focal can be written as

π z�; z1ð�Þ; z2ð�Þ;…; zn�1ð�Þ
� �¼ Xn�1

k ¼ 0

ϕk z1ð�Þ; z2ð�Þ;…; zn�1ð�Þ
� �

z�ak½

þð1�z�Þbk
�
; ð1Þ

where ϕk is the probability that exactly k co-players play action A.
A first-order Taylor-series expansion about the average strategy
zo ¼

Pn�1
ℓ ¼ 1 zℓð�Þ=ðn�1Þ of co-players shows that, to first order in δ,

the probability ϕk is given by a binomial distribution with
parameters n�1 and z○, i.e.,

ϕk z1ð�Þ; z2ð�Þ;…; zn�1ð�Þ
� �¼ n�1

k

� �
zk○ð1�z○Þn�1�kþOðδ2Þ: ð2Þ

Substituting (2) into (1) and discarding second and higher order
terms, we obtain

π z�; z○ð Þ ¼
Xn�1

k ¼ 0

n�1
k

� �
zk○ð1�z○Þn�1�k z�akþð1�z�Þbk

� � ð3Þ

for the payoff of a focal individual as a function of the focal's
strategy z� and the average strategy z○ of co-players.

2.3. Evolutionary dynamics, scaled relatedness, and Hamilton's rule

We are interested in the long-term evolutionary attractors of
the probability z of playing A. To derive them, we consider a
population of residents playing z in which a single mutant playing
zþδ appears due to mutation, and denote by ρðδ; zÞ the fixation
probability of the mutant. We take the phenotypic selection
gradient SðzÞ ¼ dρ=dδ

� �
δ ¼ 0 as measure of evolutionary success

(Rousset and Billiard, 2000, p. 819; Van Cleve, 2015, Section 2.5);
indeed, SðzÞ40 entails that the fixation probability of the mutant
is greater than that of a neutral mutant under so-called “δ-weak”
selection (Wild and Traulsen, 2007). Letting the expected relative
fecundity of an adult be equal to its expected payoff (i.e., the
payoffs from the game have fecundity effects; Taylor and Irwin,
2000), the selection gradient SðzÞ can be shown to be proportional
to what we call the “gain function”

GðzÞ ¼ ∂πðz�; z○Þ
∂z�

j z� ¼ z○ ¼ z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}direct effect;�CðzÞ

þκ
∂πðz�; z○Þ

∂z○
j z� ¼ z○ ¼ z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}indirect effect;BðzÞ

¼ �CðzÞþκBðzÞ ð4Þ

(for a derivation, see e.g., Van Cleve and Lehmann, 2013, Eq. (7), or
Van Cleve, 2015, Eq. (73)).

The gain function GðzÞ is determined by three components.
First, the direct effect �CðzÞ describing the change in expected
payoff resulting from the focal infinitesimally changing its own
strategy. Second, the indirect effect BðzÞ describing the change in
expected payoff of the focal resulting from the focal's co-players
changing their strategy infinitesimally. Third, the indirect effect is
weighted by the scaled relatedness coefficient κ, which is a
measure of relatedness between the focal individual and its
neighbors, demographically scaled so as to capture the effects of
local competition on selection (Queller, 1994; Lehmann and
Rousset, 2010).

Scaled relatedness κ is a function of demographic parameters
such as the migration rate, group size, and vital rates of individuals
or groups, but is independent of the evolving trait z and the
payoffs from the game. In general, κ can take a value between �1
and 1, depending on the demographic assumptions (Lehmann and
Rousset, 2010; Van Cleve and Lehmann, 2013). For instance, in a

model where groups split into daughter groups and compete
against each other (Traulsen and Nowak, 2006), scaled relatedness
can be shown to be given by (Lehmann et al., 2007b)

κ ¼ q� 2q=gþm=ðngÞ� �
mðng�1Þ=ðngÞþqðnþg�2Þ=g; ð5Þ

where g is the number of groups, n is group size, q is the splitting
rate at which groups form propagules, and m is the migration rate
(Van Cleve and Lehmann, 2013, Eq. (B4)). Scaled relatedness
coefficients have been evaluated for many spatially structured
populations and demographic assumptions (see Lehmann and
Rousset, 2010; van Cleve and Lehmann, 2013 and references
therein). In Appendix A we contribute to this literature by
calculating values of scaled relatedness for several variants of the
haystack model. In the subsequent analysis we treat κ as a
parameter.

The gain function (4) is sufficient to characterize convergence
stable strategies (i.e., strategies towards which selection locally
drives the population by successive allelic replacements;
Christiansen, 1991; Geritz et al., 1998) under a trait substitution
dynamic (Rousset and Billiard, 2000; Rousset, 2004). In our
context, candidate convergence stable strategies are either singu-
lar strategies (i.e., values zn for which GðznÞ ¼ 0), or the two pure
strategies z¼0 and z¼1. In particular, a singular strategy zn is
convergence stable (or an attractor) if dGðzÞ=dzj z ¼ zn o0, and
convergence unstable (or a repeller) if dGðzÞ=dzj z ¼ zn 40. Regard-
ing the endpoints, z¼0 (resp. z¼1) is convergence stable if
Gð0Þo0 (resp. Gð1Þ40).

Finally, let us also note that the condition for a mutant to be
favored by selection, �CþκB40, can be understood as a demo-
graphically scaled form of the marginal version of Hamilton's rule
(Lehmann and Rousset, 2010), with C corresponding to the
marginal direct costs and B to the marginal indirect benefits of
expressing an increased probability of playing action A. This scaled
version of Hamilton's rule partitions the selection gradient in
fecundity effects and scaled relatedness, in contrast to the parti-
tion on fitness effects and genetic relatedness of the classical
formalism (i.e., �cþrb40, where c and b are the direct and
indirect fitness effects, respectively, and r is relatedness). Social
evolution theory classifies social behaviors as altruistic, coopera-
tive (or mutually beneficial), selfish, and spiteful, according to the
signs of direct fitness costs and benefits (Hamilton, 1964; Rousset,
2004; West et al., 2007). A similar classification of social behaviors
can be done according to the behavior's effect on the direct and
indirect components of marginal payoff (or fecundity). In order to
avoid ambiguities, we refer to the resulting social behaviors as
“payoff altruistic” (C40 and B40), “payoff cooperative” (Co0
and B40), “payoff selfish” (Co0 and Bo0), and “payoff spiteful”
(C40 and Bo0).

3. Games between relatives

We start by deriving compact expressions for the direct effect
�CðzÞ, the indirect effect BðzÞ, and the gain function GðzÞ in terms
of the payoffs ak and bk of the game. These expressions provide the
foundation for our subsequent analysis.

Imagine a focal individual playing B in a group where k of its
co-players play A. Suppose that the focal switches its action to A
while co-players hold fixed their actions, thus changing its payoff
from bk to ak. As a consequence, the focal experiences a “direct
gain from switching” given by

dk ¼ ak�bk; k¼ 0;1;…;n�1: ð6Þ
At the same time, each of the co-players playing A experiences a
change in payoff given by Δak�1 ¼ ak�ak�1 and each of the co-

J. Peña et al. / Journal of Theoretical Biology 382 (2015) 122–136124



players playing B experiences a change in payoff given by
Δbk ¼ bkþ1�bk. Taken as a block, co-players experience a change
in payoff given by

ek ¼ kΔak�1þðn�1�kÞΔbk; k¼ 0;1;…;n�1; ð7Þ
where we set a�1 ¼ bnþ1 ¼ 0. From the focal's perspective, this
change in payoffs represents an “indirect gain from switching” to
the focal if co-players are relatives. Adding up direct and indirect gains
weighted by κ allows us to define the “inclusive gains from switching”

f k ¼ dkþκek; k¼ 0;1;…;n�1; ð8Þ
in a group where k out of the n�1 co-players play A.

We show in Appendix B that the direct, indirect, and net effects
appearing in (4) are indeed given by

�CðzÞ ¼
Xn�1

k ¼ 0

n�1
k

� �
zkð1�zÞn�1�kdk; ð9aÞ

BðzÞ ¼
Xn�1

k ¼ 0

n�1
k

� �
zkð1�zÞn�1�kek; ð9bÞ

and

GðzÞ ¼
Xn�1

k ¼ 0

n�1
k

� �
zkð1�zÞn�1�kf k; ð10Þ

that is, as the expected values of the relevant gains from switching
when the number of co-players playing A is distributed according
to a binomial distribution with parameters n�1 and z.

It follows from (10) that games between relatives are mathe-
matically equivalent to transformed games between unrelated
individuals, where “inclusive payoffs” take the place of standard,
or personal, payoffs. Indeed, consider a game in which A-players
and B-players respectively obtain payoffs

a0k ¼ akþκ kakþðn�1�kÞbkþ1
� �

; ð11aÞ

b0k ¼ bkþκ kak�1þðn�1�kÞbk
� �

; ð11bÞ
when k co-players play A. Payoffs a0k and b0k can be understood as
inclusive payoffs consisting of the payoff obtained by a focal plus κ
times the sum of the payoffs obtained by the focal's co-players.
Using (6) and (7) we can rewrite (8) as f k ¼ a0k�b0k, so that the
inclusive gains from switching are identical to the direct gains
from switching in a game with payoff structure given by (11).

This observation has two relevant consequences. First, existing
results on the evolutionarily stable strategies of games between
unrelated individuals (Peña et al., 2014), which are based on the
observation that the right side of (10) is a polynomial in Bernstein
form (Farouki, 2012), also apply here, provided that the inclusive gains
from switching fk are used instead of the standard (direct) gains from
switching dk in the formula for the gain function, and that evolu-
tionary stability is understood as convergence stability. For a large class

of games, these results allow us to identify convergence stable
strategies from a direct inspection of the sign pattern of the inclusive
gains from switching fk. Second, we can interpret the effect of
relatedness as inducing the payoff transformation ak-a0k, bk-b0k.
For n¼2, such transformation is the classic result of two-player games
between relatives (Hamilton, 1971; Grafen, 1979; Day and Taylor, 1998)

a00 a01
b00 b01

 !
¼

a0þκb1 ð1þκÞa1
ð1þκÞb0 b1þκa0

 !
;

where the payoff of the focal is augmented by adding κ times the
payoff of the co-player.

4. The evolution of collective action

Let us now apply our model to the evolution of collective action.
To this end, we let action A (“provide”) be associated with some effort
in collective action, action B (“shirk”) with no effort, and refer to A-
players as “providers” and to B-players as “shirkers”. Each provider
incurs a cost γ40 in order for a collective good of value βj to be
created, where j is the total number of providers. We assume that the
collective good fails to be created if no individual works (β0 ¼ 0), and
that the value of the collective good βj is increasing in the number of
providers (Δβj ¼ βjþ1�βjZ0). We distinguish between three kinds
of collective goods, depending on which individuals have access to
the good: (i) “public goods”, (ii) “club goods”, and (iii) “charity
goods”. Fig. 1 illustrates these three kinds of collective goods and
Table 1 provides the corresponding payoffs and gains from switching.

Economies of scale are incorporated in the model through the
properties of the production function βj. We investigate three
functional forms (Fig. 2): (i) linear (βj ¼ βj for some β40, so that
Δβj is constant), (ii) decelerating (Δβj is decreasing in j), and (iii)
accelerating (Δβj is increasing in j). We also say that returns to
scale are (i) constant, (ii) diminishing, or (iii) increasing. To
illustrate the effects of economies of scale, we consider the
“geometric production function”:

βj ¼ β
Xj�1

ℓ ¼ 0

λℓ; ð12Þ

with β40 and λ40, for which returns to scale are constant when
λ¼ 1, decreasing when λo1, and increasing when λ41 (Fig. 2).

For all three kinds of collective goods, the indirect gains from
switching are always nonnegative, hence the indirect effect BðzÞ is
nonnegative for all z. Consequently, participation in collective
action is either payoff altruistic or payoff cooperative, and the
selection gradient is increasing in κ. The provision of each kind of
collective good however leads to a different collective action
problem, as it is reflected in the different payoff structures of the
corresponding games (Table 1). In particular, while the provision
of charity goods is payoff altruistic for all z, the provision of public

Fig. 1. Three kinds of collective goods. Providers (A) and shirkers (B) interact socially. Providers (e.g., vigilants, cooperative hunters, or sterile workers) work together to
create a collective good (e.g., alarm calls, increased hunting success, or nest defense), which can be used exclusively by a subset of individuals in the group (filled circles).
Shirkers do not make any effort in collective action. (a) Public goods (both providers and shirkers use the good). (b) Club goods (only providers use the good). (c) Charity
goods (only shirkers use the good).
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and club goods can be either payoff altruistic or payoff coopera-
tive, depending on the parameters of the game and the resident
strategy z.

In the following, we characterize the evolutionary dynamics of
each of these three kinds of collective action problems and
investigate the effects of (scaled) relatedness on the set of evolu-
tionary attractors. Although many of our results also extend to the
case of negative relatedness, for simplicity we restrict attention to
nonnegative relatedness (κZ0). It will be shown that the evolu-
tionary dynamics fall into one of the following five dynamical
regimes: (i) “null provision” (z¼0 is the only attractor), (ii) “full
provision” (z¼1 is the only attractor), (iii) “coexistence” (there is a
unique singular strategy zn which is attracting), (iv) “bistability”
(z¼0 and z¼1 are both attracting, with a singular repeller zn

dividing their basins of attraction), and (v) “bistable coexistence”
(z¼0 is attracting, z¼1 is repelling, and there are two singular
strategies zL and zR, satisfying zLozR, such that zL is a repeller and
zR is an attractor). Regimes (i)–(iv) are those classical from 2�2
games (Cressman, 2003, Section 2.2), while bistable coexistence
can only arise for interactions with more than two players (indeed,
bistable coexistence requires the polynomial GðzÞ to have two sign
changes, which is only possible if n42; Broom et al., 1997;
Gokhale and Traulsen, 2014).

4.1. Linear production functions

To isolate the effects of the kind of collective good, we begin
our analysis with the case where the production function takes the
linear form βj ¼ βj, i.e., λ¼ 1 in (12). For all three kinds of collective

goods, the gain function can then be written as

GðzÞ ¼ ðn�1Þ �CþκBþð1þκÞDz½ �:

The parameter C40 may be thought of as the “effective cost” per co-
player of joining collective action alone. We have C ¼ γ=ðn�1Þ when
a focal provider is not among the beneficiaries of the collective good
(charity goods) and C ¼ ðγ�βÞ=ðn�1Þ otherwise (public and club
goods). The parameter BZ0 measures the incremental benefit
accruing to each co-player of a focal provider when none of the co-
players joins collective action. We thus have B¼0 for club goods and
B¼ β otherwise. Finally, D is null for public goods (D¼0), positive for
club goods (D¼ β), and negative for charity goods (D¼ �β).

Depending on the values of these parameters, we obtain the
following characterization of the resulting evolutionary dynamics:

1. For public goods (D¼0) selection is frequency independent.
There is null provision if �CþκBo0, and full provision if
�CþκB40.

2. For club goods (D40) selection is positive frequency-dependent.
There is null provision if �CþκBþð1þκÞDr0, and full provision
if �CþκBZ0. If �CþκBo0o�CþκBþð1þκÞD, there is bist-
ability: both z¼0 and z¼1 are attractors and the singular strategy

zn ¼ C�κB
ð1þκÞD ð13Þ

is a repeller.
3. For charity goods (Do0), selection is negative frequency-

dependent. There is null provision if �CþκBr0, and full
provision if �CþκBþð1þκÞDZ0. If �CþκBþð1þκÞDo0o
�CþκB, there is coexistence: both z¼0 and z¼1 are repellers
and the singular strategy zn is the only attractor.

Table 1
Payoff structures and gains from switching for three kinds of collective action problems. In each case providers incur a cost γ40 to create a collective good of value βjZ0,
where j is the number of providers in the group. The number of providers experienced by a focal is j¼k if the focal is a shirker (action B), and j¼ kþ1 if it is a provider (action
A). Direct gains (dk) and indirect gains (ek) are calculated by substituting the formulas for ak and bk into (6) and (7). Inclusive gains from switching (fk) are then obtained from
(8).

Kind of good Payoffs to A (ak) Payoffs to B (bk) Direct gains (dk) Indirect gains (ek) Inclusive gains (fk)

Public �γþβkþ1 βk �γþΔβk ðn�1ÞΔβk �γþð1þκðn�1ÞÞΔβk
Club �γþβkþ1 0 �γþβkþ1 kΔβk �γþβkþ1þκkΔβk
Charity �γ βk �γ�βk ðn�1�kÞΔβk �γ�βkþκðn�1�kÞΔβk

Fig. 2. Linear, decelerating and accelerating production functions (here, geometric production functions as given by (12) with different values for the returns-to-scale
parameter λ; and β¼1). Left panel, benefits βj from the collective good are additive for linear functions, subadditive for decelerating functions and superadditive for
accelerating functions. Right panel, incremental benefits Δβj from the collective good are constant for linear functions (constant returns to scale), decreasing for decelerating
functions (diminishing returns to scale), and increasing for accelerating functions (increasing returns to scale).
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This analysis reveals three important points. First, in the absence
of economies of scale the gain function is linear in z, which allows
for a straightforward analysis of the evolutionary dynamics for all
three kinds of collective action. Second, because of the linearity of
the gain function, the evolutionary dynamics of such games fall into
one of the four classical dynamical regimes arising from 2�2
games. Third, which of these dynamical regimes arises is deter-
mined by relatedness and the kind of good in a simple way. For all
kinds of collective action, there is null provisionwhen relatedness is
low. For public goods provision, high values of relatedness lead to
full provision. For club and charity goods, high relatedness also
promotes collective action, leading to either bistability (club goods)
or to the coexistence of providers and shirkers (charity goods).

4.2. Public goods with accelerating and decelerating production
functions

How do economies of scale change the evolutionary dynamics
of public goods provision? Substituting the inclusive gains from
switching given in Table 1 into (10) we obtain

GðzÞ ¼
Xn�1

k ¼ 0

n�1
k

� �
zkð1�zÞn�1�k �γþ 1þκðn�1Þ½ �Δβk

	 

: ð14Þ

If the production function is decelerating, Δβk is decreasing in
k, implying that GðzÞ is decreasing in z (Peña et al., 2014, Remark 3).
Similarly, if the production function is accelerating, Δβk is increas-
ing in k, so that GðzÞ is increasing in z. In both cases the
evolutionary dynamics are easily characterized by applying exist-
ing results for public goods games between unrelated individuals
(Peña et al., 2014, Section 4.3): with accelerating production
functions, there is null provision if γZ ½1þκðn�1Þ�Δβ0, and full
provision if γr ½1þκðn�1Þ�Δβn�1. If ½1þκðn�1Þ�Δβn�1o
γo ½1þκðn�1Þ�Δβ0, there is coexistence. With decelerating pro-
duction functions, there is null provision if γZ ½1þκðn�1Þ�Δβn�1,
and full provision if γr ½1þκðn�1Þ�Δβ0. If ½1þκðn�1Þ�Δβ0o
γo ½1þκðn�1Þ�Δβn�1, there is bistability.

The effect of relatedness on the evolution of public goods
provision can be better grasped by noting that multiplying and
dividing (14) by 1þκðn�1Þ we obtain

GðzÞ ¼ 1þκðn�1Þ½ �
Xn�1

k ¼ 0

n�1
k

� �
zkð1�zÞn�1�k � ~γþΔβk

� �
; ð15Þ

where ~γ ¼ γ=½1þκðn�1Þ�. This is (up to multiplication by a positive
constant) equivalent to the gain function of a public goods game

with constant cost ~γ between unrelated individuals, which has
been analyzed under different assumptions on the shape of the
production function βk (Motro, 1991; Bach et al., 2006; Hauert et
al., 2006; Pacheco et al., 2009; Archetti and Scheuring, 2011; Peña
et al., 2014). Hence, the effects of relatedness can be understood as
affecting only the cost of cooperation, while leaving economies of
scale and patterns of frequency dependence unchanged.

To illustrate the evolutionary dynamics of public goods games,
consider a geometric production function (12) with λa1 (see
Table 2 for a summary of the results and Appendix C for a
derivation). We find that there are two critical cost-to-benefit
ratios:

ε¼min 1þκðn�1Þ; λn�1½1þκðn�1Þ�
� �

and

ϑ¼max 1þκðn�1Þ; λn�1½1þκðn�1Þ�
� �

; ð16Þ

such that for small costs (γ=βrε) there is full provision and for
large costs (γ=βZϑ) there is null provision. For intermediate costs
(εoγ=βoϑ), there is a singular strategy given by

zn ¼ 1
1�λ

1� γ
β 1þκðn�1Þ½ �

� �1=ðn�1Þ" #
; ð17Þ

such that there is coexistence if returns to scale are diminishing
(λo1) and bistability if returns to scale are increasing (λ41). For a
given cost-to-benefit ratio γ=β, higher relatedness makes larger the
region in the parameter space where provision dominates. More-
over, zn is an increasing (resp. decreasing) function of κ when λo1
(resp. λ41), meaning that the proportion of providers at the
internal attractor (resp. the size of the basin of attraction of z¼1)
is larger for higher κ (Fig. 3a and d).

4.3. Club goods with accelerating and decelerating production
functions

For club goods the direct gains from switching dk (cf. Table 1)
are increasing in k independently of any economies of scale. This
implies that the direct effect �CðzÞ is positive frequency-
dependent. If the production function is accelerating, the indirect
gains from switching ek are also increasing in k, so that the indirect
effect BðzÞ is also positive frequency-dependent. For κZ0 this
ensures that, just as when economies of scale are absent, the gain
function GðzÞ is positive frequency-dependent. Hence, the evolu-
tionary dynamics are qualitatively identical to those arising from
linear production functions: for low relatedness, there is null

Table 2
Dynamical regimes of collective action for the case of geometric production functions. The dynamical outcome depends on the type of good, the magnitude of the returns-to-
scale parameter λ, and the cost-to-benefit ratio γ=β. The results hold for κZ0 and n42. The critical cost-to-benefit ratios are given by ζ¼ κðn�1Þ, ε¼minð1þζ; λn�1ð1þζÞÞ,
ϑ¼maxð1þζ; λn�1ð1þζÞÞ, η¼ 1=ðλ�1Þ� �

1þλκ ðn�2Þλκ=ð1þζÞ� �n�2
n o

, ς¼ ð1�λnÞ=ð1�λÞþζλn�1, τ¼ 1=ð1�λÞ� �
1þλκ ðn�2Þκ=ð1þζÞ� �n�2
n o

. The critical returns-to-scale

parameters are ξ¼ κðn�2Þ=½1þκðn�1Þ� and ϱ¼ 1=ξ.

λo1 λ41

Public goods γ=βrε Full provision γ=βrε Full provision
εoγ=βoϑ Coexistence εoγ=βoϑ Bistability
γ=βZϑ Null provision γ=βZϑ Null provision

λo1=ϱ λZ1=ϱ

Club goods γ=βr1 Full provision γ=βr1 Full provision
1oγ=βoς Bistability 1oγ=βoς Bistability
ςrγ=βoτ Bistable coexistence γ=βZς Null provision
γ=βZτ Null provision

λrϱ λ4ϱ

Charity goods γ=βoζ Coexistence γ=βoζ Coexistence
γ=βZζ Null provision ζrγ=βoη Bistable coexistence

γ=βZη Null provision
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provision; for high relatedness, there is bistability (see Fig. 3e for
an illustration and Appendix D.1 for proofs).

If the production function is decelerating, the indirect gains
from switching ek may still be increasing in k because the
incremental benefit Δβk accrues to a larger number of recipients
as k increases. In such a scenario, always applicable when n¼2, the
evolutionary dynamics are again qualitatively identical to those
arising when economies of scale are absent. A different picture
emerges if the number of players is greater than two and returns
to scale are diminishing. In this case, BðzÞ can be negative
frequency-dependent for some z, and hence (for sufficiently high
values of κ) so can be GðzÞ. Depending on the value of relatedness,
which modulates how the frequency dependence of BðzÞ interacts
with that of CðzÞ, and on the particular shape of the production
function, this can give rise to evolutionary dynamics different from
those discussed in Section 4.1. In particular, bistable coexistence
is possible.

As an example, consider the geometric production function
(12) with λa1 (see Table 2 for a summary of results and Appendix
D.2 for proofs). Defining the critical returns-to-scale value

ξ¼ κðn�2Þ
1þκðn�1Þ; ð18Þ

and the two critical cost-to-benefit ratios

ς¼ 1�λn

1�λ
þκðn�1Þλn�1

; and τ¼ 1
1�λ

1þλκ
ðn�2Þκ

1þκðn�1Þ

� �n�2
" #

;

ð19Þ

which satisfy ξo1 and ςoτ, our result can be stated as follows.
For λZξ the evolutionary dynamics depends on how the cost-to-
benefit ratio γ=β compares to 1 and to ς. If γ=βr1 (low costs),

there is full provision, while if γ=βZς (high costs), there is null
provision. If 1oγ=βoς (intermediate costs), there is bistability.
For λoξ, the classification of possible evolutionary dynamics is as
in the case λZξ, except that, if ςoγ=βoτ, there is bistable
coexistence, with z¼0 convergence stable, z¼1 convergence
unstable, and two singular strategies zL (convergence unstable)
and zR (convergence stable) satisfying 0ozLozRo1. Although we
have not been able to obtain closed form expressions for the
singular strategies (zn in the case of bistability; zL and zR in the
case of bistable coexistence), numerical values of their locations
can be obtained by searching for roots of GðzÞ in the interval ð0;1Þ,
as we illustrate in Fig. 3b and e.

The critical values ξ, ς, and τ are all increasing functions of
κZ0. Hence, with larger relatedness κ, the regions of the para-
meter space where some level of collective action is convergence
stable expand at the expense of the region of dominant nonprovi-
sion. Moreover, inside these regions the convergence stable
positive probability of providing increases with κ (Fig. 3b). When
the production function is “sufficiently” decelerating (λoξ) and
for intermediate cost-to-benefit ratios (ςoγ=βoτ), relatedness
and economies of scale interact in a nontrivial way, leading to
saddle-node bifurcations whereby two singular strategies appear
as κ increases (Fig. 3b).

4.4. Charity goods with accelerating and decelerating production
functions

For charity goods the direct gains from switching dk (cf. Table 1)
are always decreasing in k, so that the direct effect �CðzÞ is
negative frequency-dependent.

If the production function is decelerating, the indirect gains
from switching ek are also decreasing in k, implying that the
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Fig. 3. Bifurcation plots illustrating the evolutionary dynamics of collective action for public (a, d), club (b, e), and charity (c, f) goods with geometric production function. The
scaled relatedness coefficient κZ0 serves as a control parameter. Arrows indicate the direction of evolution for the probability of providing. Solid lines stand for convergence
stable equilibria; dashed lines for convergence unstable equilibria. (a)–(c) Diminishing returns to scale (λ¼ 0:7) and low cost-to-benefit ratio (γ=β¼ 3:5). (d–f) Increasing returns
to scale (λ¼ 1:25) and high cost-to-benefit ratio (γ=β¼ 15). In all plots, n¼20. The central arrows, for which κ¼ 0:5, could correspond, for example, to a group splitting model
with infinitely many groups (g-1) and splitting probability equal to the migration rate q¼m (5), or to a particular case of the haystack model with two founders (A.5).
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indirect effect BðzÞ is also negative frequency-dependent and that
the same is true for the gain function GðzÞ ¼ �CðzÞþκBðzÞ. Hence,
diminishing returns to scale lead to evolutionary dynamics that
are qualitatively identical to those arising when economies of scale
are absent: for low relatedness, there is null provision, and for
sufficiently high relatedness, a unique interior attractor appears
(see Appendix E.1 and Fig. 3c).

If the production function is accelerating, the indirect gains
from switching ek may still be decreasing in k because the
incremental benefit Δβk accrues to a smaller number of recipients
(n�1�k) as k increases. In such a scenario, always applicable
when n¼2, the evolutionary dynamics are again qualitatively
identical to those arising when economies of scale are absent. A
different picture emerges if n42 and the economies of scale are
sufficiently strong. In this case, BðzÞ can be positive frequency-
dependent for some z, and hence (for sufficiently high values of κ)
so can be GðzÞ. Similarly to the case of club goods provision with
diminishing returns to scale, this pattern of frequency dependence
can give rise to bistable coexistence. For a concrete example,
consider again the geometric production function (12) with λa1
(see Table 2 for a summary of results, and Appendix E.2 for proofs).
In this case, the evolutionary dynamics for n42 depend on the
critical value

ϱ¼ 1þκðn�1Þ
κðn�2Þ ; ð20Þ

and on the two critical cost-to-benefit ratios

ζ ¼ κðn�1Þ; and η¼ 1
λ�1

1þλκ
ðn�2Þλκ

1þκðn�1Þ

� �n�2
" #

; ð21Þ

which satisfy ϱ41 and ζoη.
For λrϱ the dynamical outcome depends on how the cost-to-

benefit ratio γ=β compares to ζ. If γ=βZζ (high costs), there is null
provision, while if γ=βoζ (low costs), there is coexistence. For
λ4ϱ, the dynamical outcome also depends on how the cost-to-
benefit ratio γ=β compares to η. If γ=βZη (high costs), there is null
provision. If γ=βrζ (low costs), we have coexistence. In the
remaining case (ζoγ=βoη, intermediate costs) the dynamics
are characterized by bistable coexistence. Closed form expressions
for the singular strategies (zn in the case of coexistence; zL and zR
in the case of bistable coexistence) are not available, but we can
find their values numerically, as we illustrate in Fig. 3c and f.

It is evident from the dependence of ϱ, ζ, and η on κ that
relatedness plays an important role in determining the convergence
stable level(s) of expression of helping. With higher κ, the regions of
the parameter space where some z40 is convergence stable expand
at the expense of the region of dominant nonprovision. This is so
because ζ and η are increasing functions of κ, and ϱ is a decreasing
function of κ. Moreover, inside these regions the stable non-zero
probability of providing is larger the higher κ (see Fig. 3c and f). Three
cases can be more precisely distinguished as for the effects of
increasing κ. First, z¼0 can remain stable irrespective of the value
of relatedness, which characterizes high cost-to-benefit ratios. Sec-
ond, the system can undergo a transcritical bifurcation, destabilizing
z¼0 and leading to the appearance of a unique interior attractor
(Fig. 3c). This happens when λ and γ=β are relatively small. Third,
there is a range of intermediate cost-to-benefit ratios such that, for
sufficiently large values of λ, the system undergoes a saddle-node
bifurcation, whereby two singular strategies appear (Fig. 3f). In this
latter case, economies of scale are strong enough to interact with the
kind of good and relatedness in a nontrivial way.

4.5. Connections with previous models

Our formalization and analysis of specific collective action
problems are connected to a number of results in the literature

of cooperation and helping; we discuss these connections in the
following paragraphs.

Our results on public goods games with geometric production
functions (Section 4.2 and Appendix C) extend the model studied
by Hauert et al. (2006, p. 198) from the particular case of
interactions between unrelated individuals (κ ¼ 0) to the case of
related individuals (κa0Þ and recover the result by Archetti (2009,
p. 476) in the limit λ-0, where the game is known as the
“volunteer's dilemma” (Diekmann, 1985). Although we restricted
our attention to the cases of linear, decelerating, and accelerating
production functions, it is clear that (15) applies to production
functions βj of any shape. Hence, results about the stability of
equilibria in public goods games with threshold and sigmoid
production functions (Bach et al., 2006; Pacheco et al., 2009;
Archetti and Scheuring, 2011; Peña et al., 2014) carry over to
games in spatially structured populations.

Ackermann et al. (2008) consider a model of “self-destructive
cooperation”, which can be reinterpreted as a charity goods game
with no economies of scale in a particular version of the haystack
model of population structure (Appendix A). In this model we have
κ ¼ ðn�NÞ=ðnðN�1ÞÞ, where N is the number of founders and nZN
is the number of offspring among which the game is played.
Identifying our γ and β with (respectively) their β and b, the main
result of Ackermann et al. (2008), given by Eq. 7 in their supple-
mentary material, is recovered as a particular case of our result (13).
The fact that in this example κ is a probability of coalescence within
groups shows that social interactions effectively occur between
family members, and hence that kin selection is crucial to the
understanding of self-destructive cooperation (Gardner and
Kümmerli, 2008; see also Rodrigues and Gardner, 2013).

Eshel and Motro (1988) consider a model in which one
individual in the group needs help, which can be provided (action
A) or denied (action B) by its n�1 neighbors: a situation Eshel and
Motro call the “three brothers' problem” when n¼3. Suppose that
the cost for each helper is a constant ε40 independent on the
number of volunteers (the “risk for each volunteer”, denoted by c
in Eshel and Motro, 1988) and that the benefit for the individual in
need when k co-players offer help is given by vk (the “gain
function”, denoted by bk in Eshel and Motro, 1988). Then, if
individuals need help at random, the payoffs for helping (A) and
not helping (B) are given by ak ¼ �εðn�1Þ=nþvk=n and bk ¼ vk=n.
Defining γ ¼ εðn�1Þ=n and βk ¼ vk=ðn�1Þ, we have ak ¼ �γþβk
and bk ¼ βk. Comparing these with the payoffs for public goods
games in Table 1, it is apparent that the key difference between
the case considered by Eshel and Motro (1988) and the public
goods games considered here is that a provider cannot benefit
from its own helping behavior. As we show in Appendix F, our
results for public goods games carry over to such “other-only”
goods games (Pepper, 2000). In particular, our results for public
goods games with geometric benefits can be used to recover
Results 1, 2, and 3 of Eshel and Motro (1988).

Finally, Van Cleve and Lehmann (2013)Van discuss an n-player coor-
dination game. They assume payoffs given by ak ¼ 1þSðR=SÞk=ðn�1Þ

and bk ¼ 1þPðT=PÞk=ðn�1Þ for positive R; S; T , and P satisfying R4T ,
P4S and P4T . It is easy to check that both �CðzÞ and BðzÞ are strictly
increasing functions of z having exactly one sign change. This implies
that, for κZ0, the evolutionary dynamics are characterized by
bistability. Importantly, and in contrast to the kinds of collective action
analyzed in this paper, expressing the payoff dominant action A does
not always qualify as either payoff altruistic or payoff cooperative, as
BðzÞ is negative for some interval zA ½0; ẑÞ. As a result, increasing κ can
have mixed effects on the location of the interior convergence unstable
equilibrium zn. Both of these predictions are well supported by the
numerical results reported by Van Cleve and Lehmann (2013), where
increasing κ leads to a steady increase in zn for R¼2, S¼0.5, P¼1.5,
T¼0.25, and a steady decrease in zn for R¼2, S¼0.5, P¼1.5, T¼1.25
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(see their Fig. 5). This illustrates the fact that scaled relatedness (and
hence spatial structure) plays an important role not only in the specific
context of collective action problems but also in the more general
context of nonlinear n-player games.

5. Discussion

Many discrete-action, nonlinear n-player games have been
proposed to study the evolutionary dynamics of collective action
in well-mixed populations (Boyd and Richerson, 1988; Dugatkin,
1990; Motro, 1991; Bach et al., 2006; Hauert et al., 2006; Pacheco
et al., 2009; Archetti and Scheuring, 2011; Peña et al., 2014). We
extended these models to the more general case of spatially
structured populations by integrating them into the direct fitness
approach of kin selection theory (Taylor and Frank, 1996; Rousset,
2004; Lehmann and Rousset, 2010; Van Cleve, 2015). We showed
that convergence stable strategies for games between relatives are
equivalent to those of transformed games between unrelated
individuals, where the payoffs of the transformed game can be
interpreted as “inclusive payoffs” given by the original payoffs to
self plus scaled relatedness times the sum of original payoffs to
others. The evolutionary attractors of games in spatially structured
populations can then be obtained from existing results on games
in well-mixed populations (Peña et al., 2014).

We applied these general results to the evolution of collective
action under different assumptions on the kind of collective good
and its economies of scale, thereby unifying and extending
previous analyses. We considered three kinds of collective goods,
illustrative of different kinds of helping traits in nature. Firstly,
public goods (both providers and shirkers have access to the good)
for which the collective action problem is the well known free-
rider problem (i.e., shirkers are cheaters who benefit from the
good without helping to create it). Secondly, club goods (only
providers have access to the good) for which there is no longer a
free-rider but a coordination problem (i.e., individuals might
prefer to stay alone rather than join a risky collective activity).
Thirdly, charity goods (only shirkers use the good) for which the
collective action problem takes the form of an altruism problem (i.
e., individuals would prefer to enjoy the collective good rather
than provide it for others).

We showed that relatedness can help solving each of these
collective action problems, but such effect takes different forms,
depending on the kind of good and on its economies of scale.
Simply put: relatedness transforms different collective action
problems into different games. For public goods this transforma-
tion does not qualitatively affect the evolutionary dynamics, as it
only reduces the cost of providing but otherwise leaves economies
of scale (and hence patterns of frequency dependence) unaffected.
Contrastingly, for club goods with diminishing returns and charity
goods with increasing returns, relatedness can change patterns of
frequency dependence in a nontrivial way. In particular, increasing
relatedness can induce a saddle-node bifurcation resulting in the
creation of an attracting equilibrium with positive helping and a
repelling helping threshold.

This type of evolutionary dynamics, that we call bistable coex-
istence, is different from usual scenarios of frequency dependence in
that selection favors mutants at some intermediate frequencies, but
never when rare or common. Bistable coexistence had been pre-
viously predicted in models of public goods provision with sigmoidal
production functions both in unstructured (Bach et al., 2006; Archetti
and Scheuring, 2011) and structured (Cornforth et al., 2012) popula-
tions. Our results show that bistable coexistence can also arise in
models of club goods with diminishing returns and of charity goods
with increasing returns when interactants are related. Participation
in cooperative hunting illustrates the first of these situations:

cooperative hunting is a club good (as hunted prey is available to
hunters but not to solitary individuals) and is likely to exhibit
diminishing returns because hunting success is subadditive in the
number of hunters (Packer and Ruttan, 1988, Figs. 4–9). Eusociality in
insects illustrates the second of these situations: eusociality is a
charity good (as the benefits of the good created by workers are
enjoyed only by reproducing queens) and is likely to exhibit
increasing returns because of division of labor and other factors
(Pamilo, 1991; Fromhage and Kokko, 2011). Our results suggest that
bistable coexistence might be more common than previously con-
sidered, thus expanding the repertoire of types of frequency-
dependence selection beyond classic paradigms of either stabilizing
(negative) or disruptive (positive) frequency-dependent selection
(Levin et al., 1988).

Our results have implications for theoretical and empirical
work on microbial cooperation. Although most research in this
area has focused on public goods dilemmas (Griffin and West,
2004; Gore et al., 2009; Cordero et al., 2012), club and charity
goods can also be present in microbial interactions. First, cases of
“altruistic sacrifice” (West et al., 2006), “self-destructive coopera-
tion” (Ackermann et al., 2008), and “bacterial charity work” (Lee et
al., 2010), by which providers release chemical substances that
benefit shirkers, are clear examples of charity goods. Second,
“greenbeards” (Gardner and West, 2010; Queller, 2011), where
providers produce an excludable good such as adherence or food
sources (Smukalla et al., 2008; White and Winans, 2007), can be
taken as examples of club goods. In all these examples, economies
of scale are likely to be present, and hence also the scope for the
complex interaction between relatedness and the shape of the
production function predicted by our model. In particular, the
possibility of bistable coexistence has to be acknowledged and
taken into account both in models and experiments. Under
bistable coexistence, even if providers are less fit than shirkers
both when rare and when common, they are fitter than shirkers
for some intermediate frequencies. Consequently, competition
experiments should test for different starting frequencies before
ruling out the possibility of polymorphic equilibria where provi-
ders and shirkers coexist. More generally, we encourage empirical
work explicitly aimed at identifying club and charity goods and at
measuring occurrences of economies of scale (i.e., nonlinear pay-
offs) in microbial systems.

We assumed that the actions implemented by players are
discrete. This is in contrast to standard models of games between
relatives, which assume a continuum of pure actions in the form of
continuous amounts of effort devoted to some social activity. Such
continuous-action models have the advantage that fitness or
payoff functions (the counterparts to (3)) can be assumed to take
simple forms that facilitate mathematical analysis. On the other
hand, there are situations where individuals can express only few
morphs (e.g., worker and queen in the eusocial Hymenoptera;
Wheeler, 1986), behavioral tactics (e.g., “producers” and “scroun-
gers” in Passer domesticus; Barnard and Sibly, 1981) or phenotypic
states (e.g., capsulated and non-capsulated cells in Pseudomonas
fluorescens; Beaumont et al., 2009). These situations are more
conveniently handled by means of a discrete-action model like the
one presented here. This being said, we expect our qualitative
results about the interaction between kind of good, economies of
scale, and relatedness to carry over to continuous-action models.

We assumed that the number of interacting individuals n is
constant. However, changes in density will inevitably lead to
fluctuating group sizes, with low densities resulting in small group
sizes and high densities resulting in large group sizes. It is clear
from the dependence of the critical cost-to-benefit ratios and the
critical returns-to-scale parameters on group size (Table 2) that
the effects of varying group sizes on the evolutionary dynamics of
collective action will critically depend on the kind of good and its
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economies of scale. It would be interesting to integrate this
phenomenon into our model, thus extending previous work on
the effects of group size in the evolution of helping (Motro, 1991;
Brännström et al., 2011; Peña, 2012; Shen et al., 2014).

We assumed that players play mixed strategies and that the
phenotypic deviation δ is small (i.e., “δ-weak” selection; Wild and
Traulsen, 2007), which is sufficient to characterize convergence
stability but insufficient to characterize the fixation probability of a
mutant when mutations have strong effects on phenotypes. This
last scenario may occur when individuals can only express either
full provision or null provision so that, say, mutants always play A
and residents always play B. In these cases, a different limit of
weak selection (i.e., “w-weak” selection; Wild and Traulsen, 2007)
might be more appropriate to model the evolutionary dynamics.
For general nonlinear n-player games in structured populations
the evolutionary dynamics will then depend not only on related-
ness but also on higher-order genetic interactions (Ohtsuki, 2014).
The analysis of such evolutionary games under strong mutation
effects and possibly strong selection remains to be done. This
could be partly carried out by using invasion fitness proxies such
as the basic reproductive number for subdivided populations
(Metz and Gyllenberg, 2001; Ajar, 2003).

Collective action problems in nature are likely to be more diverse
than the usually assumed model of public goods provision with
constant returns to scale. Given the local demographic structure of
biological populations, interactions between relatives are also likely
to be the rule rather than the exception. Hence, empirical work on
the evolution of altruism and cooperation should aim at measuring
the relatedness of interactants, the kind of good, and the associated
economies of scale since it is the interaction between these three
factors which determines the evolutionary dynamics of collective
action in real biological systems.
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Appendix A. The haystack model

Many models of social evolution (Matessi and Jayakar, 1976;
Wilson, 1987; Taylor and Wilson, 1988; Fletcher and Zwick, 2004;
Ackermann et al., 2008; Powers et al., 2011; Cremer et al., 2012)
have assumed variants of the haystack model (Maynard Smith,
1964), where several rounds of unregulated reproduction occur
within groups before a round of complete dispersal. In these cases,
as we will see below, the scaled relatedness coefficient κ takes the
simpler interpretation of the coalescence probability of the gene
lineage of two interacting individuals in their group. Here we
calculate κ for different variants of the haystack model.

The haystack model can be seen as a special case of the island
model where dispersal is complete and where dispersing progeny
compete globally. In this context, the fecundity of an adult
individual is the number of its offspring reaching the stage of
global density-dependent competition. The conception of off-
spring may occur in a single or over multiple rounds of reproduc-
tion, so that a growth phase within patches is possible. We let N
denote the number of founders (or lineages, or seeds) on a patch.

Two cases need to be distinguished when it comes to social
interactions. First, the game can be played between the founders.
In this case

κ ¼ 0; ðA:1Þ
since relatedness is zero among founders on a patch and there is
no local competition. Second, the game can be played between

offspring after reproduction and right before their dispersal. In this
case two individuals are related if they descend from the same
founder. Since there is no local competition, κ is directly the
relatedness between two interacting offspring and is obtained as
the probability that the two ancestral lineages of two randomly
sampled offspring coalesce in the same founder. (Relatedness in
the island model is defined as the cumulative coalescence prob-
ability over several generations, see e.g., Rousset, 2004, but owing
to complete dispersal gene lineages can only coalesce in founders.)

In order to evaluate κ for the second case, we assume that, after
growth, exactly No offspring are produced and that the game is
played between them (n¼No). Founders, however, may contribute
a variable number of offspring. Let us denote by Oi the random
number of offspring descending from the founder i¼ 1;2;…;N on
a representative patch after reproduction, i.e., Oi is the size of
lineage i. Owing to our assumption that the total number of
offspring is fixed, we have No ¼O1þO2þ⋯þON , where the Oi's
are exchangeable random variables. The coalescence probability κ
can then be computed as the expectation of the ratio of the
total number of ways of sampling two offspring from the same
founding parent to the total number of ways of sampling two
offspring:

κ ¼ E
XN
i ¼ 1

OiðOi�1Þ
NoðNo�1Þ

" #
¼N

σ2þμ2�μ
NoðNo�1Þ

� �
; ðA:2Þ

where the second equality follows from exchangeability, μ¼ E Oi½ �
is the expected number of offspring descending from any founder
i, and σ2 ¼ E ðOi�μÞ2

h i
is the corresponding variance. Due to the

fact that the total number of offspring is fixed, we also necessarily
have μ¼No=N (i.e., No ¼ E No½ � ¼ E O1þO2þ⋯þON½ � ¼Nμ),
whereby

κ ¼ No�N
NðNo�1Þþ

σ2N
NoðNo�1Þ; ðA:3Þ

which holds for any neutral growth process.
We now consider three different cases:

1. Suppose that there is no variation in offspring production
between founders, as in the life cycle described by Ackermann
et al. (2008). Then σ2 ¼ 0, and (A.3) simplifies to

κ ¼ No�N
NðNo�1Þ: ðA:4Þ

2. Suppose that each of the No offspring has an equal chance of
descending from any founder, so that each offspring is the
result of a sampling event (with replacement) from a parent
among the N founders. Then, the offspring number distribution
is binomial with parameters No and 1=N, whereby
σ2 ¼ ð1�1=NÞNo=N. Substituting into (A.3) we get

κ ¼ 1
N
: ðA:5Þ

In more biological terms, this corresponds to a situation where
individuals produce offspring according to a Poisson process
and where exactly No individuals are kept for social interac-
tions (i.e., the conditional branching process of population
genetics; Ewens, 2004).

3. Suppose that the offspring distribution follows a beta-binomial
distribution, with number of trials No and shape parameters
α40 and β¼ αðN�1Þ. Then, μ¼No=N and

σ2 ¼NoðN�1ÞðαNþNoÞ
N2ð1þαNÞ

;

J. Peña et al. / Journal of Theoretical Biology 382 (2015) 122–136 131



which yields

κ ¼ 1þα
1þαN

: ðA:6Þ

In more biological terms, this reproductive scheme results from
a situation where individuals produce offspring according to a
negative binomial distribution (larger variance than Poisson,
which is recovered when α-1), and where exactly No

individuals are kept for social interactions.

Appendix B. Gains from switching and the gain function

In the following we establish the expressions for �CðzÞ and BðzÞ
given in (9); the expression for GðzÞ (10) is then immediate from
the definition of fk (8) and the identity GðzÞ ¼ �CðzÞþκBðzÞ.

Recalling the definitions of CðzÞ and BðzÞ from (4) as well as the
definitions of dk and ek from (6) to (7) we need to show that

∂πðz�; z○Þ
∂z�

z� ¼ z○ ¼ z ¼
Xn�1

k ¼ 0

n�1
k

� �
zkð1�zÞn�1�k ak�bk

� �
;






 ðB:1Þ

∂πðz�; z○Þ
∂z○

z� ¼ z○ ¼ z ¼
Xn�1

k ¼ 0

n�1
k

� �
zkð1�zÞn�1�k kΔak�1

�





þðn�1�kÞΔbk

�
; ðB:2Þ

where the function π has been defined in (3). (B.1) follows directly
by taking the partial derivative of π with respect to z� and
evaluating at z� ¼ z○ ¼ z, so it remains to establish (B.2).

Our derivation of (B.2) uses properties of polynomials in
Bernstein form. Such polynomials, which in general can be written
as

Pm
k ¼ 0

m
k

� �
xkð1�xÞm�kck for xA ½0;1�, satisfy (Farouki, 2012,

p. 391)

d
dx

Xm
k ¼ 0

m
k

� �
xkð1�xÞm�kck ¼m

Xm�1

k ¼ 0

m�1
k

� �
xkð1�xÞm�1�kΔck:

Applying this property to (3) and evaluating the resulting
partial derivative at z� ¼ z○ ¼ z yields

∂πðz�; z○Þ
∂z○

j z� ¼ z○ ¼ z ¼ ðn�1Þz
Xn�2

k ¼ 0

n�2
k

� �
zkð1�zÞn�2�kΔak

þðn�1Þð1�zÞ
Xn�2

k ¼ 0

n�2
k

� �
zkð1�zÞn�2�kΔbk:

ðB:3Þ
In order to obtain (B.2) from (B.3) it then suffices to establish

x
Xm�1

k ¼ 0

m�1
k

� �
xkð1�xÞm�1�kck ¼

Xm
k ¼ 0

m
k

� �
xkð1�xÞm�kkck�1

m
ðB:4Þ

and

ð1�xÞ
Xm�1

k ¼ 0

m�1
k

� �
xkð1�xÞm�1�kck ¼

Xm
k ¼ 0

m
k

� �
xkð1�xÞm�kðm�kÞck

m
;

ðB:5Þ
as applying these identities to the terms on the right side of (B.3)
yields the right side of (B.2).

Let us prove (B.4) ((B.5) is proven in a similar way). Starting
from the left side of (B.4), we multiply and divide by m=ðkþ1Þ and
distribute x to obtain

x
Xm�1

k ¼ 0

m�1
k

� �
xkð1�xÞm�1�kck

¼
Xm�1

k ¼ 0

m
kþ1

m�1
k

� �
xkþ1ð1�xÞm�ðkþ1Þck

kþ1
m

:

Applying the identity r
k

� �¼ r
k

r�1
k�1

� �
and changing the index of

summation to k¼ kþ1, we get

x
Xm�1

k ¼ 0

m�1
k

� �
xkð1�xÞm�1�kck ¼

Xm
k ¼ 1

m
k

� �
xkð1�xÞm�kkck�1

m
:

Finally, changing the lower index of the sum by noting that the
summand is zero when k¼0 gives (B.4).

Appendix C. Public goods games with geometric production
function

For a geometric production function, we have Δβk ¼ βλk, so
that the inclusive gains from switching for public goods games are
given by f k ¼ �γþ 1þκðn�1Þ½ �βλk. Substituting this expression
into (10) and using the formula for the probability generating
function of a binomial random variable, we obtain

GðzÞ ¼ �γþ 1þκðn�1Þ½ �β 1�zþλz
� �n�1

: ðC:1Þ
As GðzÞ is either decreasing (λo1) or increasing (λ41) in z, A
(resp. B) is a dominant strategy if and only if min Gð0Þ;Gð1Þ½ �Z0
(resp. if and only if max Gð0Þ;Gð1Þ½ �r0). Using (C.1) to calculate
Gð0Þ and Gð1Þ then yields the critical cost-to-benefit ratios
ε¼min Gð0Þ;Gð1Þ½ � and ϑ¼max Gð0Þ;Gð1Þ½ � given in (16). The value
of zn given in (17) is obtained by solving GðznÞ ¼ 0.

Appendix D. Club goods games

For club goods games, the inclusive gains from switching are
given by

f k ¼ �γþβkþ1þκkΔβk: ðD:1Þ

D.1. Accelerating production function

In the case where the production function is accelerating, we
have the following general result.

Result 1 (Club goods games with accelerating production func-
tion): Let fk be given by (D.1) with βk and Δβk increasing in k.
Moreover, let κZ0. Then

1. If γrβ1, z¼1 is the only convergence stable strategy (full
provision).

2. If β1oγoβnþκðn�1ÞΔβn�1, both z¼0 and z¼1 are conver-
gence stable and there is a unique convergence unstable strategy
znAð0;1Þ (bistability).

3. If γZβnþκðn�1ÞΔβn�1, z ¼0 is the only convergence stable
strategy (null provision).

The assumptions in the statement of the result imply that fk is
increasing in k. In particular, we have f 0o f n�1. The sign pattern of
the inclusive gain sequence thus depends on the values of its
endpoints in the following way. If f 0Z0 (which holds if and only if
γrβ1), fk has no sign changes and a positive initial sign. If f n�1r0
(which holds if and only if γZβnþκðn�1ÞΔβn�1), fk has no sign
changes and a negative initial sign. If f 0o0o f n�1 (which holds if
and only if β1oγoβnþκðn�1ÞΔβn�1) fk has one sign change and
a negative initial sign. Result 1 follows from these observations
upon applying Peña et al. (2014, Result 3).

D.2. Geometric production function

For a geometric production function, we obtain the following
result.
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Result 2 (Club goods games with geometric production function):
Let fk be given by (D.1) with βk given by (12). Also, let κZ0 and n42
(the cases κo0 or n¼2 are trivial). Moreover, let ξ, ς and τ be
defined by (18) and (19). Then

1. If λZξ, GðzÞ is nondecreasing in z. Furthermore
(a) (a) If γ=βr1, z¼1 is the only convergence stable strategy

(full provision).
(b) (b) If 1oγ=βoς, both z¼0 and z¼1 are convergence stable

and there is a unique convergence unstable strategy znA ð0;1Þ
(bistability).

(c) (c) If γ=βZς, z¼0 is the only convergence stable strategy
(null provision).

2. If λoξ, GðzÞ is unimodal in z, with mode given by
ẑ ¼ 1þκ

½1þκðn�1Þ�ð1�λÞ. Furthermore
(a) (a) If γ=βr1, z¼1 is the only convergence stable strategy

(full provision).
(b) (b) If 1oγ=βrς, both z ¼0 and z ¼1 are convergence stable

and there is a unique convergence unstable strategy znAð0; ẑÞ
(bistability).

(c) (c) If ςoγ=βoτ, there are two singular strategies zL and zR
satisfying 0ozLo ẑozRo1. The strategies z ¼0 and zR are
convergence stable, whereas zL and z ¼1 are convergence
unstable (bistable coexistence).

(d) (d) If γ=βZτ, z¼ 0 is the only convergence stable strategy
(null provision).

Observing that ξo1 holds and ignoring the trivial case λ¼ 1,
there are three cases to consider: (i) λ41, (ii) 14λZξ, and (iii)
ξ4λ.

For λ41 the production function is accelerating and hence
Result 1 applies with β1 ¼ β and βnþκðn�1ÞΔβn�1 ¼ βς. This
yields Result 2.1 for the case λ41.

To obtain the results for the remaining two cases, we calculate
the first and second forward differences of the production function
(12) and substitute them into

Δf k ¼Δβkþ1þκ ðkþ1ÞΔ2βkþΔβk

n o
; k¼ 0;1;…;n�2;

to obtain

Δf k ¼ βλk λð1þκÞþκðλ�1Þk� �
; k¼ 0;1;…;n�2:

For λo1, the sequence Δf k is decreasing in k and hence can have
at most one sign change. Moreover, as Δf 0 ¼ βλð1þκÞ40 always
holds true, the initial sign ofΔf k is positive and whether or not the
sequence Δf k has a sign change depends solely on how Δf n�2
compares to zero. Observe, too, that for λo1 we have ς41 as
λnoλ holds.

Consider the case ξrλo1. By the definition of ξ (18) this
implies Δf n�2Z0. In this case Δf k has no sign changes and fk is
nondecreasing. The sign pattern of the inclusive gain sequence can
then be determined by looking at how the signs of its endpoints
depend on the cost-to-benefit ratio γ=β. If γ=βr1, then f 0Z0,
implying that fk has no sign changes and its initial sign is positive.
If γ=βZς, then f n�1r0 and hence fk has no sign changes and its
initial sign is negative. If 1oγ=βoς, then f 0o0o f n�1, i.e., fk has
one sign change and its initial sign is negative. Result 2.1 then
follows from an application of Peña et al. (2014, Result 3).

For λoξ we have Δf n�2o0, implying that Δf k has one sign
change from þ to � , i.e., fk is unimodal. Hence, the gain function
GðzÞ is also unimodal (Peña et al., 2014, Section 3.4.3) with mode ẑ
determined by G0ðẑÞ ¼ 0. Using the assumption of geometric
benefits, we can express GðzÞ is closed form as

GðzÞ ¼ �γþ β
1�λ

þβλ 1þκðn�1Þ½ �z� 1
1�λ

� �
ð1�zþλzÞn�2;

with corresponding derivative

G0ðzÞ ¼ ðn�1Þβλ 1þκ�ð1�λÞ 1þκðn�1Þ½ �z	 
ð1�zþλzÞn�3:

Solving G0ðẑÞ ¼ 0 then yields ẑ as given in Result 2.2. The corre-
sponding maximal value of the gain function is

GðẑÞ ¼ �γþ β
1�λ

1þλκ
ðn�2Þκ

1þκðn�1Þ

� �n�2
" #

:

Result 2.2 then follows from applying Peña et al. (2014, Result 5).
In particular, if γ=βr1, we also have γ=βoς, ensuring that f 0Z0
and f n�140 hold (with unimodality then implying that the gain
function is positive throughout). If 1oγ=βrς, we have f 0o0 and
f n�1Z0 (with unimodality then implying GðẑÞ40). If ςoγ=β, we
have f 0o0 and f n�1o0. Upon noticing that GðẑÞr0 is satisfied if
and only if γ=βZτ holds, this yields the final two cases in
Result 2.2.

Appendix E. Charity goods games

For charity goods games, the inclusive gains from switching are
given by

f k ¼ �γ�βkþκðn�1�kÞΔβk: ðE:1Þ

E.1. Decelerating production function

If the production function is decelerating, we have the follow-
ing general result.

Result 3 (Charity goods games with decelerating production
function): Let fk be given by (E.1) with β0 ¼ 0, βk increasing and
Δβk decreasing in k. Moreover, let κZ0 (the case κo0 is trivial).
Then

1. If γZκðn�1ÞΔβ0, z¼0 is the only convergence stable strategy
(null provision).

2. If γoκðn�1ÞΔβ0, both z¼0 and z¼1 are convergence unstable
and there is a unique convergence stable strategy znAð0;1Þ
(coexistence).

The arguments used for deriving this result are analogous to
those used for deriving the results for the case of club goods with
accelerating production function (Result 1 in Appendix D). The
assumptions in the statement imply that fk is decreasing in k. In
particular, we have f n�1o f 0. Consequently, if f 0r0 (which holds
if and only if γZκðn�1ÞΔβ0) the inclusive gain sequence has no
sign changes and its initial sign is negative. Observing that
f n�1 ¼ �γ�βn�1o0 always holds true, the inequality f 040
(which holds if and only if γoκðn�1ÞΔβ0) implies that the
decreasing sequence fk has one sign change and that its initial
sign is positive. Result 3 is then obtained by an application of Peña
et al. (2014, Result 3).

E.2. Geometric production function

For a geometric production function, we obtain the following
result.

Result 4 (Charity goods games with geometric production func-
tion): Let fk be given by (E.1) with βk given by (12) and let κZ0 and
n42 (the cases κo0 or n¼2 are trivial).Moreover, let ϱ, ζ and η be
defined by (20) and (21). Then

1. If λrϱ, GðzÞ is nonincreasing in z. Furthermore:
(a) If γ=βoζ, both z¼0 and z¼1 are convergence unstable and

there is a unique convergence stable strategy znAð0;1Þ
(coexistence).
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(b) If γ=βZζ, z ¼ 0 is the only convergence stable strategy (null
provision).

2. If λ4ϱ, GðzÞ is unimodal in z with mode given by

ẑ ¼ κ ðn�2Þλ�ðn�1Þ½ ��1
½1þκðn�1Þ�ðλ�1Þ . Furthermore:

(a) If γ=βrζ, both z¼0 and z¼1 are convergence unstable and
there is a unique convergence stable strategy ẑozno1
(coexistence).

(b) If ζoγ=βoη, there are two singular strategies zL and zR
satisfying 0ozLo ẑozRo1. The strategies z¼0 and zR are
convergence stable, whereas zL and z¼1 are convergence
unstable (bistable coexistence).

(c) If γ=βZη, then z¼0 is the only convergence stable strategy
(null provision).

The arguments used for deriving this result are analogous to
those used for deriving the results for club goods games with
geometric production function (Result 2 in Appendix D). Obser-
ving that ϱ41 holds for κZ0 and that the case λ¼ 1 (constant
returns to scale) is trivial, we can prove this result by considering
three cases: (i) λo1, (ii) 1oλrϱ, and (iii) ϱoλ.

For λo1, the production function is decelerating and hence
Result 3 applies with Δβ0 ¼ β. Recalling the definition of
ζ ¼ κðn�1Þ from (21) and rearranging, this yields Result 4.1 for
the case λr1oϱ.

To obtain the result for the remaining two cases, we calculate
the first and second forward differences of the benefit sequence
(12) and substitute them into

Δf k ¼ �ð1þκÞΔβkþκðn�2�kÞΔ2βk; k¼ 0;1;…;n�2:

to obtain

Δf k ¼ βλk κ ðn�2Þλ�ðn�1Þ� ��1þκð1�λÞk	 

; k¼ 0;1;…;n�2:

For λ41, the sequence Δf k is decreasing in k and hence can have
at most one sign change. Moreover, since
Δf n�2 ¼ �βλn�2ð1þκÞo0 always holds true, the sign pattern of
Δf k depends exclusively on how Δf 0 ¼ β κ ðn�2Þλ�ðn�1Þ� ��1

	 

compares to zero. Observe, too, that f n�1o0 always holds true
and that the sign of f0 is identical to the sign of ζ�γ=β.

Consider the case 1oλrϱ. Recalling the definition of ϱ (20)
we then have Δf 0r0, implying that Δf k has no sign changes and
that its initial sign is negative, i.e., fk is nonincreasing. Hence, if
f 0r0 (which holds if and only if γ=βZζ), the inclusive gain
sequence has no sign changes and its initial sign is negative.
Otherwise, that is, if γ=βoζ holds, we have f 0404 f n�1 so that
the inclusive gain sequence has one sign change and its initial sign
is positive. Result 4.1 then follows from Peña et al. (2014, Result 3).

For λ4ϱ we have Δf 040, implying that Δf k has one sign
change from þ to � , i.e., fk is unimodal. This implies that the gain
function GðzÞ is also unimodal with its mode ẑ being determined
by G0ðẑÞ ¼ 0 (Peña et al., 2014, Section 3.4.3). Using the assumption
of geometric benefits, we can express GðzÞ in closed form as

GðzÞ ¼ �γþ β
λ�1

þβ κðn�1Þ� 1
λ�1

� 1þκðn�1Þ½ �z
� �

1�zþλz
� �n�2

with corresponding derivative

G0ðzÞ ¼ ðn�1Þβðλ�1Þ 1�zþλz
� �n�3 κðn�2Þ�1þκ

λ�1
� 1þκðn�1Þ½ �z

� �
:

Solving G0ðẑÞ ¼ 0 then yields ẑ as given in Result 4.2. The corre-
sponding maximal value of the gain function is

GðẑÞ ¼ �γþ β
λ�1

1þκλ
ðn�2Þκλ

1þκðn�1Þ

� �n�2
" #

:

Result 4.2 follows from an application of Peña et al. (2014, Result
5) upon noticing that f 0Z0 (precluding the stability of z¼0 and

ensuring GðẑÞ40) holds if and only if γ=βrζ and that GðẑÞr0
(ensuring that B dominates A) is satisfied if and only if γ=βZη.
(We note that the range of cost-to-benefit ratios γ=β for which
bistable coexistence occurs is nonempty, that is η4ζ holds.
Otherwise there would exist a ratio γ=β satisfying both γ=βrζ
and γ=βZη which in light of Result 4.2(a) and Result 4.2(c) is
impossible.)

Appendix F. Other-only goods games

In other-only goods games, providers are automatically
excluded from the consumption of the good they create, although
they can still reap the benefits of goods created by other providers
in their group. Payoffs for such games are given by ak ¼ �γþβk
and bk ¼ βk, so that the inclusive gains from switching are given by
f k ¼ �γþκ kΔβk�1þðn�1�kÞΔβk

� �
.

For this payoff constellation, it is straightforward to obtain the
indirect benefits BðzÞ from (B.3) in Appendix B. Indeed, observing
that Δak ¼Δbk ¼Δβk holds for all k, we have

BðzÞ ¼ ∂πðz�; z○Þ
∂z○

j z� ¼ z○ ¼ z ¼
Xn�2

k ¼ 0

n�2
k

� �
zkð1�zÞn�2�kðn�1ÞΔβk:

Using (9a) and the fact that ak�bk ¼ �γ, the direct benefit is given
by �CðzÞ ¼ �γ. Substituting these expressions for CðzÞ and BðzÞ
into (4), we obtain

GðzÞ ¼
Xn�2

k ¼ 0

n�2
k

� �
zkð1�zÞn�2�k �γþκðn�1ÞΔβk

� �
: ðF:1Þ

It is convenient to observe that (F.1) is of a similar form as (14).
The only differences are that the summation in (F.1) extends from
0 to n�2 (rather than to n�1) and that the term multiplying the
incremental benefit Δβk is given by κðn�1Þ (rather than by
1þκðn�1Þ). All the results obtained for public goods games can
thus be easily translated to the case of other-only goods games.

Specifically, we have the following characterization of the
resulting evolutionary dynamics. With constant returns to scale,
selection is frequency-independent with null provision if
κoγ=½ðn�1Þβ� and full provision if κ4γ=½ðn�1Þβ�. With dimin-
ishing returns to scale, the gain function is decreasing in z
(negative frequency dependence). There is null provision if
γZκðn�1ÞΔβ0, and full provision if γrκðn�1ÞΔβn�2. If
κðn�1ÞΔβn�2oγoκðn�1ÞΔβ0 holds, there is coexistence. With
increasing returns to scale, the gain function is increasing in z
(positive frequency dependence). There is null provision if
γZκðn�1ÞΔβn�2, and full provision if γrκðn�1ÞΔβ0. If
κðn�1ÞΔβ0oγoκðn�1ÞΔβn�2, there is bistability.

If the production function is geometric (12), the gain function is
given by

GðzÞ ¼ �γþκðn�1Þβð1�zþλzÞn�2;

so that, for λa1, the evolutionary dynamics are similar to the case
of public goods games after redefining the critical cost-to-benefit
ratios as

ε¼min κðn�1Þ; λn�2κðn�1Þ
� �

and ϑ¼max κðn�1Þ; λn�2κðn�1Þ
� �

and letting

zn ¼ 1
1�λ

1� γ
βκðn�1Þ

� �1=ðn�2Þ" #
:
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