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� We study collective action problems with variable group sizes.

� Group-size variability may promote or inhibit the evolution of cooperation.
� We obtain conditions under which the sign of such variability effects is determined.
� Distinguishing between group sizes and experienced group sizes is important.
� We make use of stochastic orders and Bernstein polynomials.
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a b s t r a c t

Models of the evolution of collective action typically assume that interactions occur in groups of identical
size. In contrast, social interactions between animals occur in groups of widely dispersed size. This paper
models collective action problems as two-strategy multiplayer games and studies the effect of variability
in group size on the evolution of cooperative behavior under the replicator dynamics. The analysis
identifies elementary conditions on the payoff structure of the game implying that the evolution of
cooperative behavior is promoted or inhibited when the group size experienced by a focal player is more
or less variable. Similar but more stringent conditions are applicable when the confounding effect of size-
biased sampling, which causes the group-size distribution experienced by a focal player to differ from the
statistical distribution of group sizes, is taken into account.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Fish schools, wolf packs, bird flocks, and insect colonies
exemplify the inherent tendency of animals to aggregate and live
in groups (Krause and Ruxton, 2002; Sumpter, 2010). Within these
groups, animals engage in a vast array of collective actions such as
foraging (Giraldeau and Caraco, 2000), hunting (Packer and Rut-
tan, 1988), vigilance (Ward et al., 2011), defense (Hartbauer, 2010),
and navigation (Simons, 2004). These social interactions are not
without conflict, as individual and collective interests can oppose
each other to the point of discouraging joint action and the pursuit
of common goals.

Here we follow the game-theoretic approach of modelling such
social dilemmas involved in collective action as multiplayer matrix
games in which payoffs for individuals are determined by their
own action, namely whether to cooperate or not, and the number
of other individuals within their group who choose to cooperate
(Broom et al., 1997; Peña et al., 2014). As shown in the vast lit-
erature on nonlinear public goods games (e.g., Dugatkin, 1990;
Motro, 1991; Bach et al., 2006; Hauert et al., 2006; Cuesta et al.,
2008; Pacheco et al., 2009; Archetti and Scheuring, 2011) coop-
erative behavior may arise in the evolutionary solution of such
games even when other mechanisms potentially promoting
cooperation such as relatedness (Eshel and Motro, 1988; Archetti,
2009; Peña et al., 2015) and reciprocity in repeated interactions
(Boyd and Richerson, 1988; Hilbe et al., 2014) are absent.

Evolutionary models of collective action, including the ones
cited above, typically assume that social interactions occur in
groups of identical size. In contrast, empirical studies of animal
group sizes show large variation in group size (Bonabeau et al.,
1999; Gerard et al., 2002; Jovani and Tella, 2007; Griesser et al.,
2011; Hayakawa and Furuhashi, 2012). This paper studies how this
intrinsic variability in group size affects the evolution of coop-
erative behavior. We do so by modeling the evolutionary dynamics
with the replicator dynamics (Taylor and Jonker, 1978; Hofbauer
and Sigmund, 1998) and under the assumptions that the group-
size distribution is exogenous, the population is well-mixed, and
individuals express one of the two possible pure strategies. This is
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1 Here and throughout our formal analysis we focus on the effects of an
increase in (experienced) variability as the corresponding results for the effects of a
decrease in (experienced) variability are easily inferred as they are simply opposite
in sign. For instance, Proposition 1 can be read as the statement that less variation
in experienced group size inhibits cooperation when the gain sequence is convex
and promotes cooperation when the gain sequence is concave.

2 We refrain from making stronger assumptions on the support of the group-
size distribution – such as imposing a lower and/or upper bound – to accommodate
commonly considered models for group-size distributions that we use for illus-
trative purposes.
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the same setting as the one used in Peña (2012) to investigate the
effects of group-size diversity in public goods, that is, without any
frequency-dependent or assortment bias in group composition.
Although real group formation processes will certainly lead to
such biases, we stick to this setting as it allows us to infer the
consequences of relaxing the assumption of fixed group sizes
without introducing the confounding effect of strategy assortment.

We identify general conditions, both on the class of group-size
distributions and on the payoff structure of the collective action
problem, which allow us to conclude whether more or less var-
iation in group size promotes or inhibits cooperation. We thus go
beyond Peña (2012) in not limiting us to the comparison of a
deterministic group size with a variable group size (resp. the
comparison of three particular group-size distributions) and by
going beyond particular examples for collective action problems
such as the volunteer's dilemma (Diekmann, 1985) and public
goods game with synergy or discounting (Hauert et al., 2006).

To obtain our results, we combine three different kinds of
insights. First, we build on results obtained in Motro (1991) and
Peña et al. (2014) to identify conditions on the payoff structure of
the game which are sufficient to infer those shape properties of
the gain function that are required to identify the variability effects
we are interested in (Lemmas 1 and 2). These results dispense
with the need to explicitly calculate the gain function (i.e., the
difference in expected payoff between the two strategies) when-
ever the payoff structure of the game satisfies the relevant
conditions.

Second, we use the theory of stochastic orders (Shaked and
Shanthikumar, 2007) to give precise meaning to the notion that
one distribution is more ore less variable than another. This allows
us to extend the comparison between a deterministic group size
and a variable group size considered in Peña (2012) to the com-
parison of different group-size distributions. In particular, the very
same condition on the shape of the gain function (when viewed as
a function of group size) which Peña (2012) identified as being
sufficient for group-size variability to promote cooperation relative
to the benchmark of a deterministic group size yields the same
conclusion for any two group-size distributions that can be com-
pared in the convex order (Shaked and Shanthikumar, 2007).
Many commonly considered group-size distributions with the
same expected value can be compared in this way and often this is
easy to check graphically.

Third, we demonstrate that focusing on the variability of the
group-size distribution per se confounds two effects that are better
understood when viewed separately. The issue is that the pro-
portion of groups with a given size s is not identical to the pro-
portion of individuals in groups with size s because a randomly
chosen individual is more likely to find itself in a large rather than
a small group. Whereas the former proportions are described by
the group-size distribution, the latter are described by the so-
called size-biased sampling distribution (Patil and Rao, 1978) that,
for convenience, we refer to as the experienced group-size dis-
tribution. The empirical importance of distinguishing the group-
size distribution and the experienced group-size distribution is
well-understood in the statistical literature; a recent discussion in
a biological context can be found in Jovani and Mavor (2011). The
theoretical importance of distinguishing between the two dis-
tributions in our setting arises because an increase in the varia-
bility of the experienced group-size distribution may have differ-
ent evolutionary consequences than an increase in the variability
of the group-size distribution. This is because more variability in
group size does not simply induces more variability in experienced
group size but also increases average experienced group size.

Our main results are summarized in Propositions 1 and 2.
These propositions are stated in terms of the gain sequence of the
game, which collects the gains from switching (Peña et al., 2014),
i.e., the difference in payoff a focal player obtains from switching
its strategy as a function of the number of other cooperating
players in the focal player's group. Proposition 1 shows that more
variation in experienced group size promotes the evolution of
cooperative behavior whenever the payoff structure of the game is
such that the gain sequence is convex, whereas with concave gains
from switching more variation in experienced group size inhibits
the evolution of cooperative behavior.1 Because more variation in
group size not only implies more variation in experienced group
size but also an upward shift in the experienced group-size dis-
tribution, these conditions do not suffice to imply that more
variation in group size (rather than in experienced group-size)
promotes or inhibits cooperative behavior. Proposition 2 takes this
confounding effect into account and shows that more variation in
group size promotes cooperative behavior whenever the gain
sequence is convex and increasing, whereas cooperative behavior
is inhibited when the gain sequence is concave and decreasing.

The difference between the sufficient conditions in
Propositions 1 and 2 is significant as there are interesting collec-
tive action problems for which the gains from switching are con-
vex or concave but fail the additional monotonicity properties
required to determine whether more variation in group size pro-
motes or inhibits cooperation. We illustrate this and other features
of our analysis by using the volunteer's dilemma (Diekmann, 1985)
and the public goods game with synergy or discounting (Hauert
et al., 2006, Section 2.3.2) as examples. Further examples will be
provided in Section 4, where we also discuss classes of collective
action problems for which our approach is not applicable because
the gain sequences are neither convex nor concave. Finally, we
investigate the consequences of our main results for the number
and location of stable rest points of the replicator dynamics,
demonstrating that an increase or decrease in experienced group-
size variability can induce transcritical and saddle-node bifurca-
tions by which rest points can be created, destroyed, and their
stability changed.
2. Methods

2.1. Group size and experienced group size

We consider an infinitely large and well-mixed population
subdivided into groups consisting of a finite number of individuals.
We assume that group size is given by a random variable S with
support in the non-negative integers, probability distribution
p¼ ðp0; p1;…Þ, and finite expected value Ep½S� ¼

P
sps � s. We refer

to p as the group-size distribution and assume throughout that
p0þp1o1 holds, so that the fraction of groups with at least two
individuals is not zero.2

Given a group-size distribution p, the fraction p̂s of individuals
who find themselves in a group of size sZ1 is

p̂s ¼
ps � s
Ep½S�

: ð1Þ

We refer to the probability distribution p̂ ¼ ðp̂1; p̂2;…Þ defined by
(1) as the experienced group-size distribution and to its associated



Table 1

Experienced group-size distributions (Ŝ) for some common group-size distribu-
tions (S). PoðλÞ refers to a Poisson distribution with parameter λ40, which has
support on the non-negative integers and expected value λ. NBðη; πÞ refers to a
negative binomial distribution with parameters η40 and 0oπo1, which has
support on the non-negative integers and expected value ηπ=ð1�πÞ. LðδÞ refers to a
logarithmic distribution with parameter 0oδo1, which has support on the nat-
ural numbers and expected value δ= ðδ�1Þlnð1�δÞ� �

. Note that NBð1; πÞ corresponds
to a geometric distribution. See Table 1 in Patil and Rao (1978) for these and further
examples.

S ps Ŝ p̂s for sZ1

PoðλÞ λs

s!
expð�λÞ 1þPoðλÞ λs�1

ðs�1Þ! expð�λÞ
NBðη; πÞ ηþ s�1

s

� �
πsð1�πÞη 1þNBðηþ1; πÞ ηþ s�1

s�1

� �
πs�1ð1�πÞηþ1

LðδÞ �1
lnð1�δÞ

δs

s
1þNBð1; δÞ δs�1ð1�δÞ

3 The gain sequence for the volunteer's dilemma is the limit case of the gain
sequence in (2) for v¼w-0.
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random variable Ŝ as the experienced group size. In the statistical
literature the experienced group-size distribution is known as the
size-biased sampling distribution (Patil and Rao, 1978).

Unless group size is deterministic, the experienced group-size
distribution differs from the group-size distribution because a
randomly sampled individual is more likely to be a member of a
large group than of a small group. Table 1 shows the relationship
between group size and experienced group size for some dis-
tributions that are commonly used to model variation in group
size, including the classical models of Poisson and negative bino-
mial distributions (Okubo, 1986) and the logarithmic distribution
featured in recent theoretical and empirical work on animal
group-size distributions (Niwa, 2003; Ma et al., 2011; Griesser
et al., 2011). We will employ the distributions from Table 1 to
illustrate our subsequent analysis.

2.2. Social interactions and gain sequence

Social interactions take place within groups: individuals within
each group of size sZ1 participate in a symmetric s-player game.
In this game individuals either cooperate (play action A, contribute
to the provision of a collective good) or defect (action B, do not
contribute to the provision of a collective good). The payoff for an
individual is determined by its own action and the number of
other individuals in the group who play action A. Let ak denote the
payoff to an A-player and bk denote the payoff to a B-player when
k¼ 0;1;…; s�1 co-players play A (and hence s�1�k co-players
play B). We alternatively refer to A-players as “cooperators” and B-
players as “defectors”.

Let dk ¼ ak�bk denote the k-th gain from switching, i.e., the
gain in payoff an individual makes from cooperating rather than
defecting when k co-players cooperate, and let d¼ ðd0; d1;…Þ
denote the corresponding gain sequence. The gain sequence d is
increasing (decreasing, convex, concave) if ΔdkZ0 (Δdkr0,
Δ2dkZ0, Δ2dkr0) holds for all kZ0, where Δdk ¼ dkþ1�dk and
Δ2dk ¼Δdkþ1�Δdk. Examples 1 and 2 below, based on Diekmann
(1985) and Hauert et al. (2006, Section 2.3.2), illustrate how these
properties of gain sequences arise in two familiar collective action
games. Peña et al. (2014) provide further examples and general
discussion of gain sequences, their properties, and their impor-
tance for the evolutionary analysis of multiplayer games.

Example 1 (Volunteer's dilemma). In the volunteer's dilemma
each cooperator pays a cost c40, whereas defectors incur no cost.
If there is at least one cooperator (“volunteer”) in the group, a
public good is produced that provides a benefit u4c to each
member of the group. If there are no cooperators in the group,
payoffs are zero for all individuals in the group. The payoffs in this
game are given by ak ¼ ðu�c;u�c;u�c;…Þ and bk ¼ ð0;u;u;…Þ.
The gain sequence is thus dk ¼ ðu�c; �c; �c;…Þ. Here Δdk ¼ ð�u
;0;0;…Þ and Δ2dk ¼ ðu;0;0;…Þ, so that the gain sequence is
decreasing and convex.

Example 2 (Public goods game with synergy or discounting). As in
the volunteer's dilemma each cooperator incurs a cost c40 for a
public good to be produced. In contrast to the volunteer's
dilemma, the benefit each group member obtains from the public
good depends on the number of cooperators in the group and may
also differ between cooperators and defectors. Specifically, if there
are jZ1 cooperators in the group, the value of the public good is
u �Pj�1

i ¼ 0 v
i for defectors and u �Pj�1

i ¼ 0 w
i for cooperators, where

u40, v40, and w40 are parameters. The gain sequence for this
social interaction is3

dk ¼ u �
Xk
i ¼ 0

wi�
Xk�1

i ¼ 0

vi
" #

�c; ð2Þ

so that we have

Δdk ¼ u � wkþ1�vk
h i

and

Δ2dk ¼ u � wkþ1ðw�1Þ�vkðv�1Þ
h i

:

If w¼v holds (that is, cooperators and defectors obtain the same
benefit), the gain sequence is increasing and convex for w¼ v41
and is decreasing and convex for w¼ vo1. More generally, the
gain sequence is increasing and convex if wZ1 and wZv holds
and is decreasing and convex if 1ZvZw and wð1�wÞr1�v
holds. For other parameter values the gain sequence may have
different shapes. In particular, if either vZ1Zw holds or the
conditions 1ZwZv and wð1�wÞZ1�v are both satisfied, the
gain sequence is decreasing and concave. If vZwZ1 and wðw�1Þ
rv�1 holds, the gain sequence is concave and unimodal (that is,
increasing up to some critical value of k and decreasing thereafter).

Before proceeding, we note that the game introduced in
Example 2 differs from the one introduced in Hauert et al. (2006) –
and studied in Peña (2012) for the case v¼w – in that the benefits
obtained from the public good are not scaled by the inverse of the
group size. We return to this point in Section 4.

2.3. Gain function and expected gain function

If the proportion of A-players in the population is x, the average
payoffs obtained by an A-player and a B-player who find them-
selves in a group of size s are respectively given by

f Aðx; sÞ ¼
Xs�1

k ¼ 0

s�1
k

� �
xkð1�xÞs�1�kak

and

f Bðx; sÞ ¼
Xs�1

k ¼ 0

s�1
k

� �
xkð1�xÞs�1�kbk:

The difference between the average payoff of A-players and B-
players in groups of size s is then

f ðx; sÞ ¼ f Aðx; sÞ� f Bðx; sÞ ¼
Xs�1

k ¼ 0

s�1
k

� �
xkð1�xÞs�1�kdk: ð3Þ

The difference between the average payoff of an A-player and a B-
player in the population is the expectation of f ðx; ŜÞ and thus given
by
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gðx; p̂Þ ¼ Ep̂ ½f ðx; ŜÞ� ¼
X
sZ1

p̂s f ðx; sÞ; ð4Þ

where we use the subscript p̂ on the expectation operator to
emphasize its dependance on the experienced-group size distri-
bution. Throughout the following we refer to f ðx; sÞ as the gain
function and to gðx; p̂Þ as the expected gain function.

Defining

hðx; sÞ ¼ s f ðx; sÞ ð5Þ
and using (1) the expected gain can be rewritten in terms of the
underlying group-size distribution as

gðx; p̂Þ ¼ 1
Ep½S�

X
sZ1

pshðx; sÞ; ð6Þ

which is the expression used by Peña (2012, Eq. (3)).

2.4. Evolutionary dynamics

We assume that the change in frequency of A-players in the
population is described by the replicator dynamics (Taylor and
Jonker, 1978; Hofbauer and Sigmund, 1998)

_x ¼ xð1�xÞgðx; p̂Þ; ð7Þ
while noting that any other dynamics in which the direction of
selection (i.e., the sign of _x) is determined by the sign of the
expected gain function in the same way as for the replicator
dynamics will lead to identical results.

The replicator dynamics has two rest points at x¼0 (where the
whole population consists of defectors) and at x¼1 (where the
whole population consists of cooperators). Interior rest points are
given by the values xnAð0;1Þ satisfying gðxn; p̂Þ ¼ 0. An interior rest
point xn is stable if the expected gain function changes its sign
from positive to negative at xn, for which dgðxn; p̂Þ=dxo0 is a
sufficient condition. Regarding the endpoints, x¼1 is stable if the
expected gain is positive for sufficiently large x, for which gð1; p̂Þ
40 is a sufficient condition. Similarly, x¼0 is stable if the expected
gain is negative for sufficiently small x, for which gð0; p̂Þo0 is a
sufficient condition. Because f ð0; sÞ ¼ d0 holds for all s we have

gð0; p̂Þ ¼ d0; for all p̂ ð8Þ
so that the stability of the rest point x¼0 does not depend on the
group-size distribution. To simplify the exposition, we assume d0
a0 throughout the following.

When group-size is deterministic and given by s, (7) reduces to

_x ¼ xð1�xÞf ðx; sÞ:
This is the version of the replicator dynamics considered in Peña
et al. (2014), who show how shape properties of the gain sequence
d can be used to infer shape properties of the gain function f and,
thus, information about the number and stability of the rest points
of the replicator dynamics for a given deterministic group size.

To illustrate the relationship between the gain sequence, the
(expected) gain function, and the rest points of the replicator
dynamics, let us consider the volunteer's dilemma from Example
1. Substituting the gain sequence d¼ ðu�c; �c; �c;…Þ into (3)
yields the gain function f ðx; sÞ ¼ uð1�xÞs�1�c. The gain function is
strictly decreasing in x and satisfies f ð0; sÞ40 as well as f ð1; sÞo0,
so that there is exactly one interior rest point xn, which is also the
unique stable rest point of the replicator dynamics when all
groups have identical size s. The expected gain function, given by
gðx; p̂Þ ¼ u

P
sZ1p̂sð1�xÞs�1

h i
�c, is also strictly decreasing in x.

Further, gð0; p̂Þ40 holds and, provided that p̂1oc=u holds
(meaning that an individual is not too likely to find itself in the
position of being the sole member of a group), we also have
gð1; p̂Þo0. Hence, when the experienced group-size distribution is
p̂, the replicator dynamics will again have one interior rest point
xn, which is also the unique stable rest point of the dynamics.
While for deterministic group sizes this stable rest point is easily
calculated as xn ¼ 1�ðc=uÞ1=ðs�1Þ (Diekmann, 1985), even for a
game as simple as the volunteer's dilemma no analytical solution
for the stable rest point can be determined for general group-size
distributions. Nevertheless, once the right tools are brought to
bear on the issue, a great deal can be said not only about the
impact of variability in experienced group size on the evolutionary
dynamics for the volunteer's dilemma but also for more compli-
cated games such as the one considered in Example 2.

2.5. Variability order

As our interest is in isolating the effect of variation in group size
on the evolutionary dynamics, we have to take a stance on how to
compare the variability of two distributions. We follow the stan-
dard approach from the literature on stochastic orders (Shaked
and Shanthikumar, 2007) and consider one (experienced) group-
size distribution to be more variable than another if it is more
“spread out” in the sense of the so-called convex order. Through-
out the following we write qZvp if group-size distribution q is
more variable than p in this sense and similarly write q̂Zvp̂ if the
experienced group-size distribution q̂ associated with q is more
variable than the experienced group-size distribution p̂ associated
with p.

By definition (Shaked and Shanthikumar, 2007, Chapter 3), q
Zvp means that for all convex functions ϕ : R-R the inequality
Eq½ϕðYÞ�ZEp½ϕðXÞ� holds. As ϕðxÞ ¼ x and ϕðxÞ ¼ �x are both
convex functions, qZvp implies Eq½Y � ¼ Ep½X�. As ϕðxÞ ¼ x2 is a
convex function, qZvp implies Varq½Y �ZVarp½X�. Consequently, a
necessary condition for a distribution q to be more variable than a
distribution p is that q and p have the same expected value and
that the variance of q is at least as high as the variance of p. Of
course (here and in the following discussion of sufficient condi-
tions) the same statements are applicable for experienced group-
size distributions.

The conditions Eq½Y � ¼ Ep½X� and Varq½Y�ZVarp½X� are not suf-
ficient to imply that q is more variable in the convex order than p.
Rather, provided that the expected values are the same, a sufficient
condition for qZvp is that q assigns higher probability to more
extreme realizations of group size in the sense that the sequences
ðp0;p1;…Þ and ðq0; q1;…Þ cross exactly twice with qs4ps holding
for s sufficiently small and s sufficiently large, whereas ps4qs
holds for intermediate values of s (Shaked and Shanthikumar,
2007. p. 133). This sufficient condition is trivially satisfied when p
describes a deterministic group size: any group-size distribution q
with expected value s is more variable than the deterministic
group-size distribution p assigning probability 1 to s. Less trivially,
all the (experienced) group-size distributions appearing in Table 1
are ordered by variability when their expected values coincide: As
we show in A.1, negative binomial distributions with the same
expected value are ordered by variability according to the value of
the parameter η, with the geometric distribution (corresponding
to the case η¼1) being most variable and the Poisson distribution
(corresponding to the limit case η-1) being least variable. See
Fig. 1 for an illustration. The logarithmic distribution is even more
variable than the geometric distribution. The truncated Poisson,
geometric, and Waring distributions considered in Peña (2012,
Fig. 1) provide further examples of distributions satisfying the
sufficient condition stated above. It follows that all the compar-
isons considered in Peña (2012) are ones in which the group-size
distributions are ordered by variability.

One might think of pursuing the simpler approach of con-
sidering one of two distributions with the same expected value to
be “more variable” than the other if it has the higher variance.
Alas, such an approach would be of very limited applicability in



Fig. 1. Three group-size distributions ordered by variability. p1 is the geometric
distribution NBð1;5=6Þ, p2 the negative-binomial distribution NB (5,1/2), and p3 is
the Poisson distribution Po(5). All three distributions have an expected value of
5 and are thus, as shown in Appendix A.1, ordered by variability with the geometric
distribution p1 being most variable and the Poisson distribution p3 being least
variable. As explained in the text this can be seen graphically by observing that
each pair of probability mass functions crosses exactly twice, with the geometric
distribution assigning most weight and the Poisson distribution assigning least
weight to extreme realizations.

Fig. 2. Different experienced group-size distributions with the same mean and
variance can lead to different evolutionary dynamics. Here we illustrate the evo-
lutionary dynamics as given by (7) for the volunteer's dilemma with c¼1, u¼6 (cf.
Example 1) and two experienced group-size distributions. The first distribution, p̂
(blue), has support 2;4;6f g with p̂2; p̂4 ; p̂6

� �¼ 0:3;0:4;0:3ð Þ; the second distribu-
tion, q̂ (red), has support 3;4;7f g with q̂3 ; q̂4; q̂7

� �¼ 0:6;0:2;0:2ð Þ. With these
values, Ep̂ ðŜÞ ¼ Eq̂ ðŜÞ ¼ 4 and Varp̂ ðŜÞ ¼ Varq̂ ðŜÞ ¼ 2:4. The replicator dynamics for
these two cases are however different, with the distribution p̂ leading to the stable
rest point xnp̂ � 0:57 (blue circle), and the distribution p̂ leading to the stable rest
point xnq̂ � 0:51 (red circle). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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our context: unless the expected gain function is determined by
the first two moments of the experienced group-size distribution,
knowledge of the expected value and variance of the experienced
group-size distribution (or the actual group-size distribution for
that matter) does not provide enough information to determine
the expected gain function.4 This precludes the possibility of
obtaining any general results linking the variance of the experi-
enced group size to the evolutionary dynamics. Fig. 2 illustrates
this for the volunteer's dilemma.

2.6. Variability effects and experienced variability effects

A final complication we must face before proceeding to our
results is that the distinction between a more variable group size
and a more variable experienced group size is nontrivial. The
reason is that the two conditions Ep½S� ¼ Eq½S� and Ep̂ ½Ŝ� ¼ Eq̂ ½Ŝ� are
not equivalent. Indeed, a simple calculation shows that for any
group-size distribution p we have

Ep̂ ½Ŝ� ¼ Ep½S�þ
VarpðSÞ
Ep½S�

; ð9Þ

where VarpðSÞ denotes the variance of the group-size distribution.
Hence, whenever two group-size distributions p and q satisfy q
Zvp and q has a strictly higher variance than p, the experienced
group-size distribution q̂ has a strictly higher expected value than
the experienced group-size distribution p̂. Consequently, qZvp
does not imply q̂Zvp̂, as the two experienced group-size dis-
tributions will not have the same expected value.

Fig. 3 illustrates the importance of this point for the case of the
volunteer's dilemma and negative-binomially distributed group-
sizes. The left panel of the figure shows that the frequency of
cooperators at the stable rest point is a decreasing function of
4 It is not difficult, but tedious, to show that the expected gain function is
determined by the first two moments of the experienced group-size distribution if
and only if the gain sequence takes the form dk ¼ αþβkþγk2 for some parameters
α, β, and γ. In the context of a public goods game with constant cost c40 of
contributing to the public good, the gain sequence will take this form if and only if
the benefit of the public good is a polynomial of degree no larger than 3 in the
number of contributors. For the expected gain function to be determined by the
first two moments of the group-size distribution the additional restriction γ¼0 is
required.
group-size variability, whereas the right panel shows that the
frequency of cooperators at the stable rest point is an increasing
function of experienced group-size variability. As will become
clear later, these strikingly different effects of a change in varia-
bility are entirely driven by the higher average experienced group
sizes associated with more variable group sizes.

We respond by distinguishing between variability and
experienced-variability effects on the frequency of A-players in the
population. In particular, we say that there is a positive
experienced-variability effect if q̂Zvp̂ implies

gðx; q̂ÞZgðx; p̂Þ for all xA ½0;1� ð10Þ

and a negative experienced-variability effect if q̂Zvp̂ implies

gðx; q̂Þrgðx; p̂Þ for all xA ½0;1�: ð11Þ

Hence, in the case of a positive (resp. negative) experienced-
variability effect, more variability in experienced group size
unambiguously increases (resp. decreases) the difference between
the average fitness of cooperators and defectors. Similarly, we say
that the variability effect is positive if qZvp implies (10) and that it
is negative if qZvp implies (11). In either case, the interpretation is
that (10) means that variability promotes the evolution of coop-
eration, whereas (11) means that variability inhibits the evolution
of cooperation.
3. Results

Our analysis proceeds in four steps. First, we establish two
preliminary results that relate shape properties of the gain
sequence d to corresponding properties of the gain function f ðx; sÞ.
Second, we identify conditions on the gain sequence dwhich allow
us to sign the experienced-variability effect. Third, we turn to the
more challenging task of signing the variability effect. Fourth, we
draw out the implications of the inequalities in (10) and (11) for
the number and location of the rest points of the replicator
dynamics under the conditions which allow us to sign the
experienced-variability effect.



Fig. 3. Stable frequency of cooperators xn as a function of group-size variability (left) and experienced group-size variability (right) in the volunteer's dilemma (c¼2.5, u¼12).
In both panels variability increases when going from left to right with the inverse of the parameter η of a negative-binomial group-size distribution on the horizontal axis (cf.
Table 1). Left: group size is distributed according to the negative binomial NBðη; πÞ with parameter π adjusted such that the expected group size is 5 for all η. The stable
fraction of cooperators is a decreasing function of group-size variability as measured by 1=η. Right: Group size is distributed according to the negative binomial NBðη; πÞ with
parameter π adjusted such that the expected experienced group size is 5 for all η. The stable fraction of cooperators is an increasing function of experienced group-size
variability as measured by 1/η.
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3.1. Preliminaries

As noted and discussed in Peña et al. (2014), the gain function
f ðx; sÞ is a polynomial in Bernstein form. The following two pre-
liminary results summarize the properties of the gain function and
the expected gain function that are implied by the theory of
polynomials in Bernstein form (Farouki, 2012) and are of relevance
for our analysis.

We begin by relating the monotonicity and convexity proper-
ties of the gain sequence d to corresponding properties of the gain
function f ðx; sÞ when considered as a function of group size s.
Formally, we say that f ðx; sÞ is increasing (resp. decreasing) in s if
Δsf ðx; sÞ ¼ f ðx; sþ1Þ� f ðx; sÞZ0 (resp. Δsf ðx; sÞr0) holds for all sZ
1 and xA ½0;1�; f ðx; sÞ is convex (resp. concave) in s if Δ2

s f ðx; sÞ ¼Δs

f ðx; sþ1Þ�Δsf ðx; sÞZ0 (resp. Δ2
s f ðx; sÞr0) holds for all sZ1 and

xA ½0;1�. With this terminology in place, we can state the following
lemma. The proof, which uses an observation due to Motro (1991),
is in Appendix A.2.

Lemma 1. If the gain sequence d is increasing (decreasing, convex,
concave), then the gain function f ðx; sÞ is increasing (decreasing,
convex, concave) in group size s.

As noted in Peña et al. (2014, Remark 3), the gain function f ðx; sÞ
inherits the monotonicity and convexity properties of the gain
sequence d when considered as a function of x. In particular, when
the gain sequence d is increasing (decreasing), then the gain
function f ðx; sÞ is increasing (decreasing) in x. Similarly, when the
gain sequence d is convex (concave), then f ðx; sÞ is convex (con-
cave) in x. As monotonicity and convexity properties are preserved
by taking weighted averages, it is immediate from (4) that the
expected gain function gðx; p̂Þ inherits these monotonicity and
convexity properties in x no matter what the experienced group-
size distribution p̂ is. The following result thus requires no further
proof.

Lemma 2. If the gain sequence d is increasing (decreasing, convex,
concave), then the expected gain function gðx; p̂Þ is increasing
(decreasing, convex, concave) in the proportion x of A-players for all
experienced group-size distributions p̂.
3.2. Signing the experienced-variability effect

Suppose that the gain sequence d is convex. Then, as estab-
lished in Lemma 1, the function f ðx; sÞ is convex in group size s no
matter what the fraction x of A-players in the population is. By the
very definition of the relationship q̂Zvp̂, convexity of f ðx; sÞ in
group-size s is in turn sufficient to imply the inequality Eq̂ ½f ðx; ŜÞ�
ZEp̂ ½f ðx; ŜÞ� or, recalling the definition of the expected gain func-
tion in (4), the inequality in (10). It thus follows that the
experienced-variability effect is positive whenever the gain
sequence d is convex. An analogous argument shows that con-
cavity of d is sufficient to imply inequality (11). Consequently, we
obtain the following simple sufficient conditions on the payoff
structure of the game under which the experienced-variability
effect can be signed. The formal proof is in Appendix A.2.

Proposition 1. [1.1] If the gain sequence d is convex, then the
experienced-variability effect is positive.

[1.2] If the gain sequence d is concave, then the experienced-
variability effect is negative.

As we have noted before, the gain sequence for the volunteer's
dilemma in Example 1 is convex. Hence, it is an immediate
implication of Proposition 1.1 that the experienced-variability
effect is positive for the volunteer's dilemma. The results for the
public goods game with synergy or discounting in Example 2 are
more nuanced: here the gain sequence is convex for some para-
meter values (including the case v¼w considered in Peña, 2012)
and concave for others. From Proposition 1 an increase in
experienced variability promotes cooperation in the former case
but inhibits it in the latter.
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3.3. Signing the variability effect

Heuristically, we may think of an increase in variability in
group-size as giving rise to two effects, namely (i) an increase in
the variability of the experienced group-size distribution and (ii)
an upward shift in that distribution. As we have discussed in
Section 2.6, the source of the second effect is that an increase in
the variability of the group-size distribution increases the expec-
ted value of the experienced group size: qZvp implies
Eq̂ ½S�ZEp̂ ½S�.

Provided that the gain sequence is convex or concave, the first
of these effects – the experienced variability effect – can be signed
(Proposition 1). It is intuitive that the sign of the second effect,
namely the size effect resulting from an increase in the expected
experienced group size, is determined by the monotonicity prop-
erties of the gain sequence: for a given proportion x of A-players in
the population a higher experienced group size increases the
average number of A-players in a group a focal player will
experience, which in turn increases (resp. decreases) the differ-
ence in average payoff between A-players and B-players when the
gain sequence is increasing (resp. decreasing). This suggests that
the variability effect can be signed if the gain sequence is either
increasing and convex or decreasing and concave because in these
cases the experienced-variability effect and the size effect both
point in the same direction.

The proof of the following proposition in Appendix A.2 con-
firms this intuition. In this proof the function hðx; sÞ ¼ sf ðx; sÞ, that
we have introduced in (5), plays a central role. Writing the
expected gain function as in (6) it is immediate from the definition
of the convex order that convexity (resp. concavity) of the function
hðx; sÞ is sufficient to imply a positive (resp. negative) variability
effect. This first step of the proof generalizes the observation from
Peña (2012) that convexity of hðx; sÞ implies that group-size
variability promotes cooperation relative to the benchmark of a
deterministic group size. We complete the proof by showing that
the function hðx; sÞ is convex (resp. concave) in group size s for all x
when the gain sequence is increasing and convex (resp. decreasing
and concave).

Proposition 2. [2.1] If the gain sequence d is increasing and convex,
then the variability effect is positive.

[2.2] If the gain sequence d is decreasing and concave, then the
variability effect is negative.

While there are collective action problems for which the gain
sequence satisfies the conditions appearing in Proposition 2 – for
instance, Example 2 provides conditions on the parameter values
of the public goods game with synergy or discounting for which
this is the case – these conditions are much more stringent that
the ones in Proposition 1. In the cases not covered by Proposition
2, e.g., when the gain sequence is decreasing and convex (as in the
volunteer's dilemma from Example 1) or is concave and unimodal
(as it is the case in the model of Bach et al., 2006 or for a broad
range of parameter values in the game considered in Example 2),
no clear-cut prediction for the variability effect is possible. The
reason is that in such games the experienced-variability effect and
the size effect may not only point in opposite directions but their
relative strength depends on the frequency x of cooperators in the
population and, further, on the particular group-size distributions
under consideration. As a consequence, even in the simplest case
in which the replicator dynamics has a unique stable rest point, no
general conclusions about the effect of an increase in group-size
variability on the location of this rest point are possible. For
instance, while Fig. 3 documents a case in which the stable rest
point in the volunteer's dilemma is decreasing in group-size
variability, it is apparent from Peña (2012, Fig. 5) that for other
parameter values, increasing group-size variability can either
increase or decrease the stable frequency of cooperators in the
volunteer's dilemma.

3.4. Experienced variability and the rest points of the replicator
dynamics

The upshot of the preceding discussion in Section 3.3 is that
beyond the circumstances delineated in Proposition 2 there is little
hope of gaining robust insights into the effect of a change in
group-size variability on the evolution of cooperation. In this
section we thus focus on the impact of an increase in experienced
variability for the number and location of the (stable) rest points of
the replicator dynamics. We do so for games with gain sequences
d that are either convex or concave, so that the experienced-
variability effect can be signed by Proposition 1. Several case dis-
tinctions arise because convex or concave gain sequences are
general enough to allow for qualitatively different dynamic
regimes with zero, one, or two interior rest points. Thus, two kinds
of effects may arise due to an increase or decrease in experienced
variability, which we explore by considering the differences
between the evolutionary dynamics for two experienced group-
size distributions satisfying q̂Zvp̂. First, the number of stable rest
points may stay unchanged while the location of these rests points
changes. Second, the number of stable rest points might change,
either via (i) a transcritical bifurcation by which an interior point
collides with or emerges from the fixed point at x¼1, or (ii) a
saddle-node bifurcation by which two interior fixed points (one
stable, one unstable) are created or destroyed.

3.4.1. Convex gain sequences
From Proposition 1.1 we know that condition (10) holds for

convex gain sequences, so that the gain function for the more
variable experienced group-size distribution q̂ lies above the gain
function for the experienced group-size distribution p̂. Further, by
Lemma 2 the gain functions gðx; p̂Þ and gðx; q̂Þ are both convex in
the proportion x of cooperators. As a nontrivial convex function
can have at most two zeros, it follows that the replicator dynamics
for the two experienced group-size distributions under con-
sideration has at most two interior rest points. Further, if the gain
sequence is not only convex, but also monotonic (that is, either
increasing or decreasing), so will be the expected gain function
(Lemma 2), implying that in these cases there is at most one
interior rest point.

If the replicator dynamics for p̂ and q̂ have the same number of
interior rest points, then an increase in experienced variability has
no effect on the stability of the rest points. For instance, if d0o0
holds and for both experienced group-size distributions there is a
unique interior rest point, then (8) and the fact that stable and
unstable rest points must alternate imply that for both p̂ and q̂ the
rest point x¼0 is stable, the interior rest point is unstable, and the
rest point at x¼1 is stable. Further, (10) implies that an increase in
experienced variability causes the proportion of cooperators in an
unstable interior rest to decrease, whereas the proportion of
cooperators in a stable interior rest point increases. The left panel
of Fig. 4 illustrates these assertions for the case of an increasing
and convex gain sequence arising from the collective action pro-
blem in Example 2.

Depending on the sign of d0, a more variable experienced
group-size distribution may either increase or decrease the num-
ber of interior rest points of the replicator dynamics for a convex
gain sequence. Suppose d0o0 holds. We can then distinguish two
cases. In the first case gð1; p̂Þ40 holds and the replicator dynamics
for p̂ has a unique interior rest point (which is unstable). Hence
(10) implies that the replicator dynamics for q̂ also has a unique
interior rest point, so that the number of interior rest points is



Fig. 4. Positive experienced-variability effect for a game with increasing and convex gain sequence. The game is the public goods game with synergy or discounting of
Example 2 with u¼1, v¼1.2, w¼1.3. The group-size distributions p and q are respectively given by a Poisson distribution PoðλÞ with λ¼ 4 and a negative binomial dis-
tribution NBðη; πÞ with η¼1 and π ¼ 2=3. With these parameters, Ep̂ ½Ŝ � ¼ Eq̂ ½Ŝ � ¼ 5 (cf. Table 1). Moreover, q̂ is more variable than p̂ (cf. Appendix A.1). Left. c¼4. Increasing
experienced variability from p̂ to q̂ causes the unstable interior rest point (open circle) to decrease, hence increasing the basin of attraction of the fully cooperative, stable
rest point x¼1. Right. c¼6. Increasing experienced variability from p̂ to q̂ stabilizes the otherwise unstable fully cooperative rest point x¼1 via a transcritical bifurcation.

Fig. 5. Negative experienced-variability effect for a game with unimodal and concave gain sequence. The game is the public goods game with synergy or discounting of
Example 2 with u¼1, v¼1.3, w¼1.2, c¼1.175. The group-size distribution p is given by a Poisson distribution PoðλÞ with λ¼ 4. The group-size distributions q1 and q2 are
respectively given by negative binomial distributions NBðη1 ; π1Þ and NBðη2 ; π2Þwith η1 ¼ 9, η2 ¼ 1, π1 ¼ 2=7, π2 ¼ 2=3. With these parameters, Ep̂ ½Ŝ � ¼ Eq̂1

½Ŝ � ¼ Eq̂2
½Ŝ � ¼ 5 for the

associated experienced group-size distributions (cf. Table 1). Moreover, q̂2 is more variable than q̂1 and q̂1 is more variable than p̂ (cf. Appendix A.1). Left. Increasing
experienced variability from p̂ to q̂1 causes the unstable interior rest point (open circle) to increase and the stable interior rest point (filled circle) to decrease. The fraction of
cooperators at the interior stable rest point thus decreases and its basin of attraction shrinks. Right. Increasing experienced variability from p̂ to q̂2 makes the gain function
strictly negative. Consequently, the interior rest point disappears (through a saddle-node bifurcation) and the fully defective rest point x¼0 remains as the only stable
rest point.
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unchanged and the analysis from the preceding paragraph is
applicable. In the second case gð1; p̂Þo0 holds and there is no
interior rest point. If the experienced-variability effect is suffi-
ciently strong as to induce gð1; q̂Þ40, then the replicator dynamics
for q̂ has one interior rest point and the rest point at x¼1 is stable,
whereas the replicator dynamics for p̂ has no interior rest point
and x¼1 is unstable. In this scenario, illustrated in the right panel
of Fig. 4, the positive experienced-variability effect thus manifests
itself in stabilizing a fully cooperative population via a transcritical
bifurcation. In contrast, if d040 holds, then the replicator
dynamics for q̂ cannot have more, but might have less, rest points
than the replicator dynamics for p̂. For instance, when the gain
sequence d is convex and decreasing (as in the volunteer's
dilemma) and the inequality gð1; p̂Þo0ogð1; q̂Þ holds, then d040
implies that the replicator dynamics for p̂ has one interior rest
point, which is also the unique stable rest point, whereas the
replicator dynamics for q̂ has no interior rest point and x¼1 is the
unique stable rest point.

3.4.2. Concave gain sequences
For a concave gain sequence d the experienced-variability effect

is negative (Proposition 1.2), that is, q̂Zvp̂ implies (11). Further,
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Lemma 2 shows that both gðx; p̂Þ and gðx; q̂Þ are concave in x and
thus have at most two interior rest points.

As in the case of convex gain sequences, two scenarios are
possible. First, the replicator dynamics for p̂ and q̂ may have the
same number of rest points in which case (8) implies that the sta-
bility pattern of the rest points for the two dynamics is identical
and, further, (11) implies that the fraction of cooperators in an
interior stable rest point is higher for the experienced group-size
distribution q̂, whereas the fraction of cooperators in an interior
unstable rest point is higher for the experienced group-size dis-
tribution p̂. The left panel of Fig. 5 illustrates this scenario for an
unimodal and concave gain function arising from the gain sequence
of the collective action problem introduced in Example 2.

Second, the replicator dynamics for the more variable q̂ may
have less (when d0o0) or more (when d040) interior rest points
than the replicator dynamics for p̂. For instance, when d0o0 and
gð1; p̂Þo0 holds, then the replicator dynamics for p̂ may have two
interior rest points (with the first of these being unstable and the
second stable), whereas with a sufficiently strong experienced-
variability effect a saddle-node bifurcation occurs and the repli-
cator dynamics for q̂ has no interior rest point. This possibility is
illustrated in the right panel of Fig. 5. We note that the situation
illustrated in this figure is analogous to the one considered in Bach
et al. (2006), who also show that a downward shift in a unimodal
concave gain function may cause the number of interior rest points
of the replicator dynamics to drop from two to zero via a saddle-
node bifurcation. The key difference between the scenario con-
sidered in Bach et al. (2006) and the one we consider here is that
in their model the disappearance of the interior rest points is
caused by a downward shift in the gain sequence d, whereas in our
model the gain sequence is given and it is a shift in the experi-
enced group-size distribution which induces the bifurcation
causing the disappearance of the interior rest points.
4. Discussion

We have studied the effect of variation in group size on the
evolution of cooperative behavior. Provided that variation in group
size is measured according to its induced effect on the variability of
the experienced group-size distribution, the model offers clear pre-
dictions: more experienced variability promotes cooperation when
the payoff structure of the collective action problem implies a convex
gain sequence and inhibits cooperation when the gain sequence is
concave. We further showed that these variability effects can have
important dynamic consequences. These include the shifting, crea-
tion, and destruction of internal equilibria and the stabilization of the
full cooperative equilibrium (cf. Figs. 4 and 5). Altogether, our results
add to previous work demonstrating the importance of accounting
for group-size distributions in models of the evolution of social
behaviors (Brännström et al., 2011; Peña, 2012).

Our analysis raises the question of which collective action
problems besides the ones we have considered in Examples 1 and
2 give rise to convex or concave gain sequences. This is so for the
class of club good games with accelerating or decelerating pro-
duction functions considered in Peña et al. (2015). In these games
defectors are excluded from the consumption of the collective
good and obtain a payoff of zero. The payoff to a cooperator is
ukþ1�c, where the benefit uj from obtaining the club good is
increasing in the number of cooperators j and c40 is the cost of
providing the good. Here the gain sequence is simply dk ¼ ukþ1�c,
which is convex when uj is convex (accelerating production
function) and concave when uj is concave (decelerating production
function). For many commonly studied collective action problems,
however, the gain sequences are neither convex nor concave.
Examples are (i) public goods games involving nontrivial
thresholds, such that the cooperation of more than one but less
than the total number of players is required to produce a collective
good (Bach et al., 2006; Pacheco et al., 2009; Archetti and
Scheuring, 2011), (ii) games of multiplayer reciprocity (Boyd and
Richerson, 1988), and (iii) variants of the volunteer's dilemma
where the cost of providing the good is shared among cooperators
(Weesie and Franzen, 1998), sometimes referred to as multiplayer
snowdrift game (Zheng et al., 2007; Souza et al., 2009). No
unambiguous, general conclusions concerning the effect of vari-
able group sizes can be obtained in these cases. Instead, the gain
function has to be explicitly calculated under different group size
(or experienced group size) distributions in order to correctly sign
the experienced-variability and the variability effects.

Throughout our analysis we have assumed that payoffs for
individuals are determined by their own action (whether to
cooperate or defect) and the number of cooperators in the group.
All of our analysis carries over without substantial changes to the
case in which the payoff consequences of own actions depend on
the number of defectors (rather than the number of cooperators)
in the group. Consider, for instance, the weakest-link stag hunt
game (Hirshleifer, 1983). This game is like the volunteer's
dilemma, except that the cooperation of all individuals in a group
is required for the benefit to be produced. To analyse this game we
may consider the gains from switching as a function of the number
of other individuals in the group that play defect (rather than
cooperate). The resulting gain sequence is identical to the one for
the volunteer's dilemma. Consequently, Proposition 1.1 continues
to apply and we may conclude that an increase (resp. decrease) in
experienced variability promotes (resp. inhibits) cooperative
behavior in the weakest-link stag hunt game.

As we have already noted at the end of Section 2.2, Hauert et al.
(2006) assume that the benefits in their public goods game with
synergy or discounting are scaled by the inverse of group-size. This
implies that the gains from switching are no longer solely deter-
mined by the number of cooperators in the group but depend
directly on group size. Consequently, our analysis is not directly
applicable. It can be shown, however, that with such scaled ben-
efits the very same conditions which ensure the convexity (resp.
concavity) of the gain function f ðx; sÞ in group size in our version of
the public goods game (see Example 2) now ensure that the
function hðx; sÞ ¼ sf ðx; sÞ is convex (resp. concave) in group-size. As
convexity (resp. concavity) of hðx; sÞ in group size is sufficient to
sign the variability effect (cf. the discussion preceding the state-
ment of Proposition 2), we obtain the following, somewhat sur-
prising result: with scaled benefits the variability effect can be
signed under exactly the same conditions that allowed us to sign
the experienced-variability effect. In particular, the results shown
in Peña (2012, Fig. 2) for the scaled version of the public goods
game with synergy or discounting are not limited to the particular
group-size distributions considered there, but hold for arbitrary
group-size distributions that are ordered by variability.

This paper has followed Peña (2012) in investigating the evo-
lutionary consequences of variation in group size using the repli-
cator dynamics of two-strategy multiplayer games. While this is a
common approach in the literature on collective action problems
(Motro, 1991; Bach et al., 2006; Peña et al., 2014), alternative
approaches are possible. In particular, the very same question we
are interested in has been explored by Brännström et al. (2011) in
the framework of continuous strategies and adaptive dynamics
(Metz et al., 1996). In contrast to us, Brännström et al. (2011) focus
on a class of games in which the selection gradient (the counter-
part to our gain function) is determined by the average contribu-
tion in the group, so that variability in group size has no effect on
the location of the singular rest points (corresponding to the rest
points of our dynamics). Rather, the effect of variation in group
size in their setting reflects itself in whether evolutionary
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branching can occur near a singular strategy and this is the
question they study. Despite such fundamental differences, the
analysis in Brännström et al. (2011) shares a common feature with
ours, namely that the variance of the group-size distribution is not
a suitable measure of variability. The measure of variability used
by Brännström et al. (2011), the average inverse group size, is
consistent with our approach in the sense that more variable
group-size distributions according to our definition have higher
average inverse group size.

We conclude by noting that we have taken the group-size
distribution to be exogenous and assumed that the experienced
group-size distribution is independent of the behavior of the
individuals under consideration. It would be a logical next step to
extend out analysis to models in which these assumptions are
relaxed. For instance, in addition to their different cooperative
tendencies, individuals might vary with respect to the size of the
group they would prefer to join (Powers et al., 2011) or their
intrinsic ability to form groups (Garcia and De Monte, 2013). In
these cases, group sizes are expected to vary endogenously in
nontrivial ways. If the underlying collective action problem
involves nonlinearities, the variability effects described in this
paper will also arise and feed back into the evolutionary dynamics.
Future work should investigate how variation in group size might
affect the coevolution of group formation and cooperation in col-
lective action dilemmas.
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Appendix A

A.1. Ordering of some common (experienced) group-size distribu-
tions by their variability

Suppose the distribution p of X is negative binomial with
parameters ηx and πx, and the distribution q of Y is negative
binomial with parameters ηy and πy. Assume further that πxηx=ð1
�πxÞ ¼ πyηy=ð1�πyÞ holds, so that both random variables have the
same expected value (cf. Table 1). Whitt (1985) demonstrates that
the relationship qZvp is then implied if the inequality

rqðsÞZrpðsÞ ð12Þ
holds for all sZ1, where rp(s) and rq(s) denote the indices of
relative log-concavity of the two distributions, which can be cal-
culated as (see Whitt, 1985, Example 6)

rpðsÞ ¼
ðsþ1Þðηxþs�1Þ

sðηxþsÞ ;

rqðsÞ ¼
ðsþ1Þðηyþs�1Þ

sðηyþsÞ :

A straightforward calculation shows that condition (12) is satisfied
for all sZ1 when ηxZηy holds. Consequently, we have qZvp if
ηxZηy is satisfied. Further, as the Poisson distribution can be
obtained as the limit of the negative binomial distribution for η-
1 and the geometric distribution corresponds to the negative
binomial with η¼ 1, it follows that (provided the expected values
are identical) a geometric distribution is more variable than any
negative binomial distribution with η41 and every negative
binomial distribution is more variable than a Poisson distribution.
In particular, any two of the experienced group-size distributions
appearing in Table 1 are ordered by variability when they have the
same expected value.
These kinds of comparisons can be extended to many other
familiar distributions. For instance, the Waring distribution con-
sidered in Peña (2012) as a group-size distribution is a mixture of
geometric distributions (Johnson et al., 2005, p. 290) and is thus
(Whitt, 1985, Example 6) more variable than the geometric dis-
tribution with the same expected value as the Waring distribution
under consideration. Similarly, it is immediate from Johnson et al.
(2005, Eq. 7.21, p. 307) that the logarithmic distribution featured in
Table 1 is more variable than the geometric distribution.

A.2. Proofs
Proof of Lemma 1. The polynomial in Bernstein form of degree n
of the sequence d¼ ðd0; d1; d2;…Þ is

Bn x; dð Þ ¼
Xn
k ¼ 0

n

k

� �
xkð1�xÞn�kdk; ð13Þ

so that from (3) we have

f ðx; sÞ ¼ Bs�1 x; dð Þ: ð14Þ

By (14) we have

Δs f ðx; sÞ ¼ Bsðx;dÞ�Bs�1ðx; dÞ ð15Þ
and

Δ2
s f ðx; sÞ ¼ Bsþ1ðx; dÞ�Bsðx; dÞ

� �� Bsðx; dÞ�Bs�1ðx; dÞ
� �

: ð16Þ

Motro (1991) shows (cf. the proof of part (ii) of the proposition
in his appendix) that

Bsðx; dÞ�Bs�1ðx; dÞ ¼ xBs�1ðx;ΔdÞ ð17Þ
holds for xA ½0;1�, sZ1 and all sequences d. Observing that the
polynomial in Bernstein form appearing on the right side of (17) is
positive (negative) when all its coefficients are positive (negative)
it follows from (15) that for increasing (decreasing) d we have that
Δsf ðx; sÞ is positive (negative) for all xA ½0;1� and sZ1. This
establishes that f ðx; sÞ is increasing (decreasing) in s when d is
increasing (decreasing).

Applying (17) to both terms in square brackets in (16) and
simplifying we obtain

Δ2
s f ðx; sÞ ¼ x Bsðx;ΔdÞ�Bs�1ðx;ΔdÞ� �

:

As (17) holds for all sequences d, we can apply it with Δd in place
of d, to obtain

Bsðx;ΔdÞ�Bs�1ðx;ΔdÞ ¼ xBs�1ðx;Δ2dÞ:
Combining the previous two equalities yields

Δ2
s f ðx; sÞ ¼ x2Bs�1ðx;Δ2dÞ: ð18Þ

As the right side of (18) is positive (negative) if d is convex (con-
cave), this establishes that f ðx; sÞ is convex (concave) in s if d is
convex (concave).□

Proof of Proposition 1. Let ĝZvp̂ and let d be convex. From
Lemma 1, convexity of d implies that f ðx; sÞ is convex in s. Because
q̂Zvp̂ implies that the inequality Eq̂ ½ϕðŜÞ�ZEp̂ ½ϕðŜÞ� holds for all
convex functions ϕ, it follows that Eq̂ ½f ðx; ŜÞ�ZEp̂ ½f ðx; ŜÞ� holds for
all xA ½0;1�. Substituting the definition of the gain function (4) into
this inequality, we obtain (10). Consequently, the experienced
variability effect is positive when d is convex.

When d is concave, Lemma 1 implies that f ðx; sÞ is concave in s,
so that � f ðx; sÞ is convex in s. Hence q̂Zvp̂ yields that the
inequality �Eq̂ ½f ðx; ŜÞ�Z�Ep̂ ½f ðx; ŜÞ� holds for all xA ½0;1�. Multi-
plying both sides of the inequality by �1 and using the definition
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of the gain function (4), we obtain (11). Consequently, the
experienced variability effect is negative when d is concave.□

Proof of Proposition 2. We show that for increasing and convex
d, qZvp implies (10), thus establishing the first part of the pro-
position. (As in the proof of Proposition 1, the result for the case in
which d is decreasing and concave follows by an analogous
argument.)

Using (6), we may write

gðx; p̂Þ ¼ 1
Ep½S�

X
s
pshðx; sÞ;

gðx; q̂Þ ¼ 1
Eq½S�

X
s
qshðx; sÞ:

As qZvp implies Ep½S� ¼ Eq½S�, it follows that the variability effect is
positive ifX
s
qshðx; sÞZ

X
s
pshðx; sÞ ð19Þ

holds for all x. By definition of the convex order, (19) is satisfied
whenever hðx; sÞ is convex in s, so that it suffices to establish this
property.

If d is increasing and convex, then f ðx; sÞ is increasing
and convex in group-size s (Lemma 1). Using the definition
hðx; sÞ ¼ sf ðx; sÞ, a straightforward calculation shows that

Δshðx; sÞ ¼ ðsþ1ÞΔsf ðx; sÞþ f ðx; sÞ; ð20Þ

Δ2
s hðx; sÞ ¼ ðsþ2ÞΔ2

s f ðx; sÞþ2Δsf ðx; sÞ: ð21Þ
Because f ðx; sÞ is increasing and convex in group size, it satisfies
Δsf ðx; sÞZ0 and Δ2

s f ðx; sÞZ0, so that (21) implies Δ2
s hðx; sÞZ0.

Hence, hðx; sÞ is convex.□
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