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a b s t r a c t 

How the size of social groups affects the evolution of cooperative behaviors is a classic question in evo- 

lutionary biology. Here we investigate group size effects in the evolutionary dynamics of games in which 

individuals choose whether to cooperate or defect and payoffs do not depend directly on the size of the 

group. We find that increasing the group size decreases the proportion of cooperators at both stable and 

unstable rest points of the replicator dynamics. This implies that larger group sizes can have negative ef- 

fects (by reducing the amount of cooperation at stable polymorphisms) and positive effects (by enlarging 

the basin of attraction of more cooperative outcomes) on the evolution of cooperation. These two effects 

can be simultaneously present in games whose evolutionary dynamics feature both stable and unstable 

rest points, such as public goods games with participation thresholds. Our theory recovers and general- 

izes previous results and is applicable to a broad variety of social interactions that have been studied in 

the literature. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cooperative behaviors increase the fitness of other individuals,

ossibly at the expense of a personal fitness cost ( Sachs et al.,

004 ). Biological examples include the production of ex-

racellular public goods in microbes (e.g., iron-scavenging

olecules, West and Buckling 2003 , bacteriocins that elimi-

ate competition, Bucci et al. 2011 , and factors that contribute to

iofilm formation, Rainey and Rainey 2003 ), vigilance and sentinel

ehavior in meerkats ( Clutton-Brock et al., 1999 ), group hunting

n social carnivores ( Packer and Ruttan, 1988 ), and the costly

unishment of free-riders in humans ( Raihani and Bshary, 2011 ).

dentifying the different pathways that allow cooperative behavior

o be favored by natural selection ( Lehmann and Keller, 2006;

owak, 2006; Van Cleve and Akçay, 2014; West et al., 2007 ) is im-

ortant for understanding the origin of social groups ( Krause and

uxton, 2002 ) and the major transitions in evolution ( Bourke,

011; Maynard Smith and Szathmáry, 1995 ). 

Group size is a crucial variable of social life. Therefore, how

n increase or decrease in group size affects individual incen-

ives to cooperate is a recurrent question across the behavioral sci-

nces. In economics and political science, the “group-size paradox”

efers to cases where larger groups are less successful than smaller
∗ Corresponding author. 
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roups in pursuing their common goals because individuals have a

reater incentive to shirk when group size is large ( Esteban and

ay, 2001; Olson, 1965 ). In behavioral ecology, one of the most

eplicated findings is the negative relationship between group size

nd level of vigilance in social foragers due to increased preda-

or detection and dilution of predator risk ( Beauchamp, 2008; El-

ar, 1989; Roberts, 1996 ). Increasing group size has also been

hown to reduce voluntary contributions to public goods ( Isaac and

alker, 1988 ) and reciprocity-based cooperation in multi-person

nteractions ( Boyd and Richerson, 1988 ). More generally, however,

hether or not larger groups are less conducive to cooperation

ight depend on specific assumptions about group interactions. In

articular, instances of positive group size effects have also been

eported in the empirical literature ( Isaac et al., 1994; Powers and

ehmann, 2017; Yip et al., 2008 ) and are of significant theoretical

nterest ( Cheikbossian and Fayat, 2018; Dugatkin, 1990; Powers and

ehmann, 2017; Shen et al., 2014 ). 

To study how the size of social groups affects the evolution

f cooperation we follow the standard approach of modeling so-

ial interactions as symmetric games with two strategies (“cooper-

te” and “defect”) between several players, i.e., as symmetric mul-

iplayer matrix games ( Broom et al., 1997; Gokhale and Traulsen,

014 ). Payoffs depend on the own strategy and on the number

f co-players choosing to cooperate, possibly in a nonlinear way.

trategies are genetically or culturally transmitted, and populations

re large enough that the replicator dynamic ( Hofbauer and Sig-

und, 1998; Weibull, 1995 ) provides a reasonable model of evolu-

https://doi.org/10.1016/j.jtbi.2018.08.004
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tion. Within this framework, the stable rest points of the replica-

tor dynamic correspond to evolutionary endpoints, while the un-

stable rest points signpost the basins of attraction of such evolu-

tionary attractors. Many social dilemmas for which cooperation can

be maintained without repeated interactions or genetic assortment

have been theoretically studied using this or related formalisms

during the last decades ( Archetti, 2009; Archetti and Scheuring,

2011; Bach et al., 2006; Boyd and Richerson, 1988; Chen et al.,

2017; 2013; 2015; De Jaegher, 2017; dos Santos and Peña, 2017;

Diekmann, 1985; Dixit and Olson, 20 0 0; Dugatkin, 1990; Goeree

and Holt, 2005; Hauert et al., 2006; Kaznatcheev et al., 2017;

Motro and Eshel, 1988; Pacheco et al., 2009; Palfrey and Rosen-

thal, 1984; Peña et al., 2015; Sasaki and Uchida, 2014; Souza et al.,

2009; Taylor and Ward, 1982; Van Cleve and Lehmann, 2013 ). 

To obtain our results, we make use of the fact that the gain

function determining the direction of selection in the replicator

dynamic is a polynomial in Bernstein form ( Farouki, 2012 ). The co-

efficients of this polynomial are given by the gains from switch-

ing ( Peña et al., 2014 ), i.e., the differences in payoff a focal player

obtains by switching from defection to cooperation as a function of

the number of other cooperators in the group. Our analysis makes

essential use of the structure of the gain sequence of the game,

which collects such gains from switching. We illustrate our results

with examples and discuss how previous results in the literature

(either proven using alternative arguments or hinted at by numer-

ical analysis) can be recovered using our approach. 

Under the conditions that payoffs do not depend directly on

the size of the group and that the number of interior rest points

of the replicator dynamics do not change as group size increases,

we establish that the proportion of cooperators at both stable and

unstable interior rest points decreases with group size. This find-

ing, summarized in Proposition 1 in Section 3.1 , is our main re-

sult. Proposition 1 implies that two kinds of group size effects are

possible in the games we analyze. First, a negative group size ef-

fect, as the levels of cooperation at stable polymorphisms decrease

with increasing group size. Second, a positive group size effect, as

the size of the basin of attraction of the stable rest point with the

largest level of cooperation increases as well. Proposition 2 iden-

tifies general conditions under which the number of rest points is

independent of group size. 

Sections 3.2 and 3.3 explore the consequences of these general

results for two important particular cases subsuming many of the

multiplayer matrix games appearing in the literature studying the

evolution of cooperation (e.g., Archetti and Scheuring 2011; Bach

et al. 2006; Dugatkin 1990; Pacheco et al. 2009; Souza et al. 2009;

Weesie and Franzen 1998 ). Section 3.2 considers games with gain

sequences having a single sign change. For such games the repli-

cator dynamics have a unique interior rest point that is decreas-

ing in group size ( Proposition 3 ). If the sign change is from posi-

tive to negative, the interior rest point is stable and the group size

effect is negative, as the proportion of cooperators at the interior

rest point decreases. Conversely, if the sign change is from neg-

ative to positive, the interior rest point is unstable and the group

size effect is positive, as the basin of attraction of full defection de-

creases while the basin of attraction of full cooperation increases.

In Section 3.3 , we focus on games characterized by “bistable co-

existence” ( Gokhale and Traulsen, 2014; Peña et al., 2015 ), i.e., a

phase portrait where the unstable interior rest point divides the

basins of attraction of the stable interior rest point and full de-

fection. Such a phase portrait is typical of many nonlinear so-

cial dilemmas, including those featuring participation thresholds or

public goods games with sigmoid production functions ( Archetti,

2018; Archetti and Scheuring, 2011; Bach et al., 2006; Dugatkin,

1990; Pacheco et al., 2009; Peña et al., 2014; Souza et al., 2009 ).

For these games there is both a negative group size effect (as

the proportion of cooperators at the stable interior rest point de-
reases) and a positive group size effect (as the basin of attraction

f full defection decreases). This result is stated in Proposition 4 .

lternatively, an increase in group size can lead to a loss of both

nterior rest points. This makes the group size effect negative as

n increase in group size results in full defection being the only

ttracting point of the replicator dynamics. 

Several models in the literature consider a more complicated

ependence of payoffs on group size than the one we consider in

ur main result. For instance, if the total benefit from cooperating

as to be shared among group members (as in standard formu-

ations of the linear public goods game, e.g., Boyd and Richerson

988 ), then the gains from switching themselves depend on group

ize. This introduces an additional effect, which might either rein-

orce or countervail the fundamental group size effect investigated

n Section 3 . We investigate this additional effect in Section 4 and

tate counterparts of Propositions 3 and 4 as Propositions 5 and 6 .

ection 5 discusses and concludes. 

. Model 

.1. Social interactions 

Social interactions take place in groups of equal size n .

hroughout the paper, n is treated as a parameter that satisfies

 ≤ n ≤ n for some given numbers n < n and we use N to denote

he set of all such group sizes. Individuals within each group par-

icipate in a symmetric n -player game, playing either strategy A

“cooperate”) or strategy B (“defect”). The payoff for an individual

s determined by its own strategy and the number of other indi-

iduals in the group who cooperate but is otherwise independent

f group size. Let a k denote the payoff to an A -player (“cooper-

tor”) and b k denote the payoff to a B -player (“defector”) when

 = 0 , 1 , . . . , n − 1 co-players play A (and hence n − 1 − k co-players

lay B ). Irrespective of their own strategy, players prefer other

roup members to cooperate, i.e., a k +1 ≥ a k and b k +1 ≥ b k hold for

ll k = 0 , 1 , . . . , n − 2 ( Kerr et al., 2004; Uyenoyama and Feldman,

980 ). We begin our analysis by assuming that the payoffs a k , and

 k do not depend explicitly on group size n . In Section 4 we relax

his assumption. 

The gain in payoff an individual makes from cooperating rather

han defecting when k co-players cooperate is d k = a k − b k . We re-

er to this as the k th gain from switching (to cooperation). In all

f the games we consider in the following, d k will be negative for

ome k , indicating the presence of a social dilemma in which in-

ividuals increase their own payoff by defecting but thereby lower

he payoffs of all other group members ( Kerr et al., 2004; Matessi

nd Karlin, 1984 ). 

While our results apply more generally, we will consider a va-

iety of public goods games to motivate and illustrate our results.

n these games, cooperators make a costly contribution to the pro-

ision of a public good, whereas defectors free ride on the con-

ribution of cooperators. Unless indicated otherwise, we will sup-

ose that the cost c > 0 incurred by each contributor is indepen-

ent of the number of other contributors and that all group mem-

ers obtain the same benefit u j , which is increasing in the number

f cooperators j . As the number of contributors includes the fo-

al player, we have j = k if the focal player defects, but j = k + 1

f the focal player cooperates. Therefore, in such a public goods

ame payoffs are given by a k = u k +1 − c and b k = u k , and the k th

ain from switching is d k = �u k − c, where �u k = u k +1 − u k ≥ 0 .

erhaps the simplest example of such a public goods game is the

olunteer’s dilemma ( Diekmann, 1985 ) in which at least one co-

perator is required for a benefit v > c to be enjoyed by all group

embers. This corresponds to the case θ = 1 of a threshold pub-

ic goods game, in which a minimum number θ of cooperators is

equired for a benefit v > c to be enjoyed by all group members,
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o that u j = v if j ≥ θ and u j = 0 otherwise ( Archetti, 2009; Bach

t al., 2006; Palfrey and Rosenthal, 1984; Taylor and Ward, 1982 ). 

.2. Evolutionary dynamics 

Evolution occurs in a large, well-mixed population with groups

f identical size n randomly formed by binomial sampling. Hence,

f there is a proportion x of A -players and a proportion 1 − x of B -

layers in the population, then the expected payoffs to A -players

nd B -players are respectively given by 

A 
n (x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k (1 − x ) n −1 −k a k , 

nd 

B 
n (x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k (1 − x ) n −1 −k b k . 

We assume that the change in the proportion of A -players over

volutionary time is given by the continuous-time replicator dy-

amic ( Hofbauer and Sigmund, 1998; Weibull, 1995 ) 

˙ 
 = x (1 − x ) g n (x ) , (1)

here 

 n (x ) = πA 
n (x ) − πB 

n (x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k (1 − x ) n −1 −k d k , (2)

.e., the difference in expected payoffs between the two strategies,

s the “gain function” ( Bach et al., 2006 ), which can also be inter-

reted as the selection gradient on a continuously varying mixed

trategy x ( Peña et al., 2015 ). Since the factor x (1 − x ) is always

onnegative, the sign of the gain function g n ( x ) indicates the sign

f ˙ x in Eq. (1) and hence the direction of selection, that is, whether

r not the proportion of A -players will increase for a given popu-

ation composition x and group size n . 

The replicator dynamic has two trivial (or “pure”) rest points

t x = 0 (where the whole population consists of defectors) and

t x = 1 (where the whole population consists of cooperators). In-

erior (or “mixed”) rest points are given by the values x ∗ ∈ (0, 1)

atisfying 

 n (x ∗) = 0 . 

o simplify the exposition, we impose the regularity condition

hat d g n (x ∗) / d x � = 0 holds at all interior rest points. An interior

est point is then stable (i.e., evolutionarily attracting) if and only

f d g n ( x 
∗)/d x < 0 holds, and unstable (i.e., evolutionarily repelling)

therwise. We further suppose that for n ∈ N the number of sign

hanges s of the gain sequences (d 0 , d 1 , . . . , d n −1 ) is independent

f group size n (i.e., the gain sequence (d 0 , d 1 , . . . , d n −1 ) has no

ign changes between n − 1 and n − 1 ), indicating that the funda-

ental structure of the social dilemma under consideration is the

ame for all group sizes in the range under consideration. More-

ver, we suppose that s ≥ 1 holds as otherwise either full defection

 x = 0 ) or full cooperation ( x = 1 ) is the unique stable rest point of

he replicator dynamics for all group sizes n ∈ N . 

. Results 

.1. General results 

Our first result shows that if the number of interior rest points

s independent of group size, then the proportion of cooperators at

ll interior rest points decreases when group size increases. 

roposition 1. Suppose that the replicator dynamics (1) and (2) have

he same number of interior rest points � ≥ 1 for all group sizes n ∈ N,
nd denote these rest points by 0 < x ∗n, 1 < . . . < x ∗n,� < 1 for group size

. Then x ∗n +1 ,r < x ∗n,r holds for all n = n , . . . , n − 1 and r = 1 , · · · , � . 

The full proof of Proposition 1 is in Appendix A.1 . The key step

owards obtaining this result is the following identity, which links

he gain functions (and thus the replicator dynamics) for adjacent

roup sizes: 

 n (x ) = g n +1 (x ) − x 

n 

d g n +1 

d x 
(x ) . (3)

q. (3) is a simple consequence of properties of the gain func-

ions g n ( x ), previously observed by Motro (1991) , which stem

rom the fact that the gain functions are polynomials in Bernstein

orm ( Peña et al., 2014 ) with coefficients (given by the gains from

witching d k ) that do not depend on group size. 

To see how Eq. (3) yields Proposition 1 , observe that this equa-

ion implies that at the interior rest points of the dynamic with

roup size n + 1 (where the gain function g n +1 (x ) vanishes), the

ain function g n ( x ) will have the opposite sign of the derivative

 g n +1 (x ) / d x . This ensures that between any two interior rest points

f the replicator dynamic for group size n + 1 the replicator dy-

amic for group size n has exactly one rest point. The result then

ollows upon establishing that the remaining interior rest point for

he replicator dynamic with group size n must have a higher pro-

ortion of cooperators than the largest interior rest point x ∗
n +1 ,� 

for

roup size n + 1 . 

The decrease in the proportion of cooperators at all interior rest

oints as group size increases asserted in Proposition 1 leads to

ontrasting effects of group size on the evolution of cooperation.

irst, there is an obvious negative group size effect, as the propor-

ion of cooperators at stable polymorphisms decreases with group

ize. Second, the proportion of cooperators at unstable rest points

ecreases as well. As the rest points of the replicator dynamics al-

ernate between being stable and unstable, this implies an increase

n the size of the basin of attraction of the stable rest point with

he largest proportion of cooperators. Hence, there is also a pos-

tive group size effect. These two effects are illustrated in Fig. 1

or the relatively complex case of a game with three interior rest

oints: x ∗n, 1 (stable), x ∗n, 2 (unstable), and x ∗n, 3 (stable). In line with

roposition 1 , larger group sizes lead to smaller proportions of co-

perators at the two stable interior rest points x ∗
n, 1 

and x ∗
n, 3 

but

lso, via a decrease in the value of x ∗
n, 2 

, to a larger basin of at-

raction for x ∗n, 3 and a smaller basin of attraction for x ∗n, 1 . As x ∗n, 3 
ustains a higher level of cooperation than x ∗

n, 1 
, this latter effect

an be said to promote the evolution of cooperation. 

Proposition 1 is predicated on the assumption that the number

f interior rest points for the different group sizes under consider-

tion is the same. This does not have to be the case. In particular,

t is possible that an increase in group size leads to a decrease in

he number of rest points. Fig. 2 illustrates this possibility for the

ase of a threshold public goods game. On the other hand, the ar-

uments establishing Proposition 1 show that an increase in group

ize can never lead to an increase in the number of rest points.

urther, it is known that the number of interior rest points of the

eplicator dynamics cannot exceed the number of sign changes s

n the gain sequences ( Peña et al., 2014 , Property 2). Therefore, if

he number of interior rest points of the replicator dynamic for the

aximal group size n is equal to s , then the number of interior rest

oints of the replicator dynamics is independent of group size. The

roof of the following result in Appendix A.2 demonstrates that,

n addition, if an increase in group size causes a reduction in the

umber of interior rest points, then the number of rest points is

educed by an even amount. 

roposition 2. Suppose that the number of interior rest points of the

eplicator dynamic (1) and –(2) for group size n is equal to the num-

er of sign changes s of the gain sequences. Then for all group sizes
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Fig. 1. Group size effects in the threshold public good game with an additional reward δ > 0 shared among cooperators considered by Chen et al. (2013) . Payoffs are 

given by a k = u k +1 + δ/ (k + 1) − c and b k = u k , where u j = v if j ≥ θ and u j = 0 otherwise. In all panels, c = 1 , v = 5 , θ = 7 , δ = 1 . 5 . Left panel: Gain functions ( lines ) with 

corresponding rest points ( circles ), and direction of selection ( arrows ) for two group sizes: n = 10 , and n = 11 . Full circles represent stable rest points and empty circles 

represent unstable rest points. Right panel: Proportion of cooperators at the interior rest points as function of group size for 10 ≤ n ≤ 40. The direction of selection ( arrows ) is 

also shown. As group size increases, the proportion of cooperators at interior rest points decreases. 

Fig. 2. An increase in group size can lead to a reduction in the number of rest 

points. Here we illustrate this effect for a threshold public goods game with c = 

1 , v = 2 . 8 , θ = 4 , which has two interior rest points for group size n = 5 but no 

interior rest points for group size n = 6 . 
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n ∈ N the number of interior rest points of the replicator dynamics is

equal to s. More generally, if n ≥ n > m ≥ n , then the number of in-

terior rest points of the replicator dynamic with group size n is either

equal to the number of interior rest points of the replicator dynamic

with group size m or lower by an even amount. 

3.2. Games with a unique interior rest point 

Suppose that for all group sizes n ∈ N the replicator dynam-

ics have a unique interior rest point that, for simplicity, we de-

note by x ∗n . It is then immediate from Proposition 1 that the pro-

portion of cooperators at this rest point is decreasing in group

size. Combining this observation with the sufficient condition

for the existence of a unique interior rest point from Result 3

in Peña et al. (2014) immediately yields: 

Proposition 3. Suppose that for all n ∈ N the gain sequences have a

single sign change ( s = 1 ). Then the replicator dynamics (1) –(2) have

a unique interior rest point for all n ∈ N, and the proportion of coop-

erators x ∗n at this interior rest point is decreasing in group size n. 
Proposition 3 encompasses two cases. First, the gains from

witching can be positive for a small number of cooperators (up

o some threshold 

ˆ k < n ) and negative for a large number of coop-

rators (beyond the threshold 

ˆ k ). In this case there exists a unique

nterior rest point x ∗n that is also the unique stable rest point of the

eplicator dynamics ( Peña et al., 2014 , Result 3.2). For this case,

roposition 3 indicates that the group size effect is negative in

he sense that an increase in group size causes a decrease in the

roportion of cooperators at equilibrium. This finding generalizes

 result due to Motro (1991) , who showed that there is a unique

table interior rest point and a negative group size effect for pub-

ic goods games with concave benefits and intermediate costs (for

hich �u k , and therefore d k , is decreasing in k , and �u 0 > c > �u n
olds). It also generalizes the well-known result that the propor-

ion of cooperators at the unique stable rest point of the volun-

eer’s dilemma is decreasing in group size (cf., e.g., Archetti 2009 )

nd corresponding results for the volunteer’s dilemma with cost

haring ( Dugatkin, 1990; Weesie and Franzen, 1998 ). This last ex-

mple, which differs from the other two in that the gains from

witching are not monotonically decreasing in k , is illustrated in

ig. 3 . 

The second case encompassed by Proposition 3 is the one in

hich the gains from switching are negative for a small number of

ooperators (up to some threshold 

ˆ k < n ) and positive for a large

umber of cooperators (beyond the threshold 

ˆ k ). In this case the

wo trivial rest points x = 0 and x = 1 are stable and the unique

nterior rest point x ∗n , which separates the basins of attraction of

he two stable rest points, is unstable ( Peña et al., 2014 , Result

.2). For this case, Proposition 3 indicates that the group size ef-

ect is positive in the sense that with an increase in group size the

asin of attraction of full defection ( x = 0 ) shrinks while the basin

f attraction of full cooperation ( x = 1 ) increases. For public goods

ames with convex benefits and intermediate cost (for which �u k ,

nd therefore d k , is increasing with �u 0 < c < �u n ) this effect has

een previously noted in Motro (1991) . 

.3. Games with two interior rest points 

Many social dilemmas are such that defection is individually

dvantageous if the number of cooperating co-players is either suf-

ciently small or sufficiently high, while cooperation is individu-

lly advantageous in between, i.e., the gains from switching sat-

sfy d 0 < 0 and the gain sequences (d 0 , d 1 , . . . , d n −1 ) have two sign
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Fig. 3. Group size effects in the volunteer’s dilemma with cost sharing considered by Weesie and Franzen (1998) . Payoffs are given by a k = v − c/ (k + 1) , b 0 = 0 , and b k = v 
for k ≥ 1. In all panels, c = 1 . Left panel: Gain functions ( lines ) with corresponding rest points ( circles ), and direction of selection ( arrows ) for v = 2 , and two group sizes: 

n = 3 , and n = 4 . Full circles represent stable rest points and empty circles represent unstable rest points. Right panel: Proportion of cooperators at the interior rest point as 

function of group size for different parameter values. The direction of selection ( arrows ) is also shown. As group size increases, the proportion of cooperators at the unique 

stable interior rest point decreases, i.e., the group size effect is negative. 
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hanges for all group sizes n ∈ N . This scenario arises in the thresh-

ld public goods game when the minimum number θ of coop-

rators required for the benefit v > c to be enjoyed by all group

embers satisfies 2 ≤ θ < n . More generally, public goods games in

hich the benefits from the provision of the public good are sig-

oid in the number of contributors and the costs of provision are

ntermediate ( Archetti, 2018; Archetti and Scheuring, 2011 ) have

his structure. Peña et al. (2014) provide further examples and dis-

ussion. 

Assuming that the gains from switching have the structure de-

cribed above ensures that the rest point at x = 0 is stable and

he rest point at x = 1 is unstable for all n ∈ N ( Peña et al., 2014 ,

esult 1). Further, there are at most two interior rest points sat-

sfying 0 < x ∗
n, 1 

< x ∗
n, 2 

< 1 , with the smaller of these rest points

 x ∗
n, 1 

) being unstable and the larger interior rest point ( x ∗
n, 2 

) be-

ng stable. The existence of these rest points is guaranteed if ḡ n =
ax 0 ≤x ≤1 g n (x ) > 0 holds ( Peña et al., 2014 , Result 4.1). Combin-

ng these observations with the arguments yielding the results in

ection 3.1, Appendix A.3 proves: 

roposition 4. Suppose that for all n ∈ N the gain sequences have

wo sign changes ( s = 2 ), their initial signs are negative, and that

¯ n̄ > 0 holds. Then, the replicator dynamics (1) –(2) have two interior

est points for all group sizes n ∈ N. Further, at both the unstable rest

oint x ∗
n, 1 

and the stable rest point x ∗
n, 2 

the proportion of cooperators

s decreasing in group size and we have 

 

∗
n +1 , 1 < x ∗n, 1 < x ∗n +1 , 2 < x ∗n, 2 (4)

or all n satisfying n ≤ n < n . 

Proposition 4 indicates that there are two different effects of

roup size on cooperation in games with two interior rest points.

irst, there is a negative group size effect, as the proportion of

ooperators at the stable interior rest point decreases as group

ize increases, i.e., x ∗
n +1 , 2 

< x ∗
n, 2 

holds. Second, there is a positive

roup size effect, as the proportion of cooperators at the unsta-

le interior rest point also decreases as group size increases, i.e.,

 

∗
n +1 , 1 

< x ∗
n, 1 

holds, implying that the basin of attraction of full de-

ection ( x = 0 ) shrinks while the basin of attraction of the stable

ightmost rest point increases. These effects are in line with what

appens in games with a unique interior rest point that we have

iscussed in Section 3.2 . The additional twist is that rather than

aving the group size effect being negative or positive depending
n the structure of the game, both the negative and the positive

roup size effects co-occur in the same game. 

Fig. 4 illustrates Proposition 4 for the case of a threshold public

oods game. As noted above, the result is applicable more gener-

lly. For instance, the observations (obtained via numerical calcu-

ations) that both interior rest points decrease with group size for

he n -person tit-for-tat model of Dugatkin (1990) (his “Model II”)

nd the n -person snowdrift game discussed by Souza et al. (2009) ,

re implied by Proposition 4 . 

The role of the condition ḡ n̄ > 0 in the statement of

roposition 4 is to ensure that the replicator dynamic has two in-

erior rest points for group size n̄ and, therefore, has these two

est points for all group sizes ( Proposition 2 ). If the reverse in-

quality ḡ n̄ < 0 holds, then for large groups there are no interior

est points, whereas (provided that the inequality ḡ n > 0 holds) for

mall group sizes there exists two interior rest points. In such a

ituation there is (as illustrated in Fig. 2 ) a critical group size such

hat for smaller group sizes the rest point x = 0 is the only stable

est point, whereas for larger group sizes there is a stable poly-

orphism at which some proportion of the population cooperates.

ence, this describes a case in which the group size effect is un-

mbiguously negative. 

. Extension: games with gain sequences depending on group 

ize 

So far our analysis has assumed that the payoffs a k and b k , and

herefore the gains from switching d k , depend only on the number

f other cooperators a focal player interacts with and not directly

n the size of the group. This assumption is not always warranted.

or instance, Hauert et al. (2006) and Pacheco et al. (2009) con-

ider variants of a public goods game in which the benefits u k from

ooperation are shared among all group members rather than ac-

ruing to each individual. The payoffs to cooperators and defectors

re then a n 
k 

= u k +1 /n − c and b n 
k 

= u k /n . The resulting gains from

witching 

 

n 
k = 

�u k 

n 

− c, (5) 

epend not only on k but also on group size n . 

If the gains from switching are, as in Eq. (5) , decreasing in

roup size, then the proportion of cooperators at an unstable inte-

ior rest point may increase with group size. In particular, as illus-
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Fig. 4. Group size effects in a threshold public good game. Payoffs are given by a k = u k +1 − c and b k = u k , where u j = v if j ≥ θ and u j = 0 otherwise. In all panels, c = 1 , 

v = 5 , and θ = 3 . Left panel: Gain functions ( lines ) with corresponding rest points ( circles ), and direction of selection ( arrows ) for two group sizes: n = 5 , and n = 6 . Full 

circles represent stable rest points and empty circles represent unstable rest points. Right panel: Proportion of cooperators at the interior rest points as function of group 

size for 5 ≤ n ≤ 30. The direction of selection ( arrows ) is also shown. As group size increases, the proportion of cooperators at both interior rest points decreases. This leads 

to both a negative group size effect (the proportion of cooperators at the interior stable rest point decreases) and a positive group size effect (the basin of attraction of the 

interior stable rest point increases). 

Fig. 5. Group size effects in the model with discounted benefits from Hauert et al. (2006) . Payoffs are given by a k = u k +1 /n − c and b k = u k /n, where u k = v (1 − w 

k ) / (1 − w ) 

with 0 < w < 1. For intermediate values of c ( w 

n −1 / n < c/ v < 1 / n ) the gains from switching d n 
k 

= v w 

k /n − c satisfy the assumptions in the statement of Proposition 5 . In all 

panels, c = 1 . Left panel: Gain functions ( lines ) with corresponding rest points ( circles ), and direction of selection ( arrows ) for v = 50 , w = 0 . 7 , and two group sizes: n = 10 , 

and n = 11 . Full circles represent stable rest points and empty circles represent unstable rest points. Right panel: Proportion of cooperators at the interior rest point as 

function of group size for different parameter combinations. The direction of selection ( arrows ) is also shown. 
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n  
trated for the case of a threshold public goods game in Fig. 6 be-

low, Propositions 3 and 4 are no longer applicable to describe the

group size effect on unstable interior rest points. Further, there is

no hope to obtain a counterpart to Proposition 1 . In the following

we therefore focus on stable interior rest points and show that for

these the conclusions from Propositions 3 and 4 remain intact. 

Consider, first, the case in which the gain sequences

(d n 
0 
, d n 

1 
, . . . , d n 

n −1 
) have a single sign change from positive to

negative for all group sizes n ∈ N . This ensures that the replicator

dynamics, given by Eq. (1) with 

g n (x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k (1 − x ) n −1 −k d n k , (6)

have a unique interior rest point x ∗n for all group sizes n ∈ N and

that this rest point is stable. Appendix A.4 shows the following re-

sult, and Fig. 5 illustrates it for the model with discounted benefits

proposed by Hauert et al. (2006) . 

Proposition 5. Suppose that the gain sequences (d n 
0 
, d n 

1 
, . . . , d n 

n −1 
)

have a single sign change from positive to negative for all n ∈ N. Then
he replicator dynamics defined by Eq. (1) and Eq. (6) have a unique

table interior rest point x ∗n for all n ∈ N. Further, if d n +1 
k 

≤ d n 
k 

holds

or all k = 0 , 1 , . . . , n − 1 and all n satisfying n ≤ n < n̄ , then the pro-

ortion of cooperators x ∗n at this interior rest point is decreasing in

roup size n. 

The intuition for Proposition 5 is that a decrease in the gains

rom switching decreases the gain function and that such a de-

rease in the gain function reduces the proportion of cooperators

t the stable interior rest point. Therefore, the negative dependence

f the gains from switching on group size considered here rein-

orces the group size effect observed in Proposition 3 by further

educing the proportion of cooperators at the stable interior rest

oint. The same intuition applies to the following counterpart to

roposition 4 that we prove in Appendix A.5 : 

roposition 6. Suppose that the gain sequences (d n 
0 
, d n 

1 
, . . . , d n 

n −1 
)

ave two sign changes, their initial signs are negative, and that ḡ n > 0

olds for all n ∈ N. Then the replicator dynamics defined by Eq. (1) and

q. (6) have two interior rest points x ∗n, 1 < x ∗n, 2 for all group sizes

 ∈ N with the first of these unstable and the second stable. Fur-
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Fig. 6. Illustration of Proposition 6 for the case of a threshold game with shared benefits. Payoffs are given by a n 
k 

= u k +1 /n − c and b n 
k 

= u k /n, where u j = v if j ≥ 3 and 

u j = 0 otherwise. Both panels show the gain functions g n ( x ) for group sizes n = 4 and n = 5 ( solid lines ) and the gain function ˆ g 5 (x ) for the larger group size ( dashed lines ) 

corresponding to the benchmark of a threshold public goods game in which payoffs for group size 5 are the same as for group size 4. In both panels the proportion of 

cooperators at the stable interior rest point decreases as group size increases. Left panel: the proportion of cooperators at the unstable interior rest point decreases as group 

size changes from n = 4 to n = 5 ( v = 20 , c = 1 ). Right panel: the proportion of cooperators at the unstable interior rest point increases as group size changes from n = 4 to 

n = 5 ( v = 14 , c = 1 ). 
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her, if d n +1 
k 

≤ d n 
k 

holds for all k = 0 , 1 , . . . , n − 1 and all n satisfying

 ≤ n < n̄ , then the proportion of cooperators at the stable rest point

 

∗
n, 2 is decreasing in group size n. 

Fig. 6 illustrates the conclusions from Proposition 6 for a game

aving the same structure as a threshold public goods game,

xcept that the benefits u k are shared among all group mem-

ers as in Eq. (5) . Fig. 6 also illustrates that sharing the ben-

fits among more group members decreases the gain function

nd thereby increases the proportion of cooperators at the unsta-

le interior rest point compared to the benchmark case consid-

red in Proposition 4 . Depending on parameter values, this effect

ay or may not be large enough to overturn the conclusion from

roposition 4 . 

. Discussion 

We have investigated how group size affects the evolutionary

ynamics of multiplayer cooperation. More specifically, we have

hown that an increase in group size can have a negative effect

a decrease in the proportion of cooperators at equilibrium) and

 positive effect (an increase in the basin of attraction of the sta-

le rest point sustaining the largest proportion of cooperators) on

ocial evolution. Depending on the payoff structure of the social

nteractions one effect can be present and the other absent (as in

ames featuring a single interior rest point), or both effects can be

resent at the same time (as in games featuring two interior rest

oints). For threshold public goods games and other games charac-

erized by bistable coexistence both the invasion barrier needed for

ooperators to invade a population of defectors and the proportion

f cooperators expected at the stable interior rest point decrease

s group size increases. We have also shown that if payoffs depend

xplicitly on group size and such dependence is negative, the neg-

tive group size effect is reinforced, while the positive group size

ffect is attenuated or, depending on the particular payoff structure

f the game, reversed. 

The negative group size effect we identify is in line with the

ommon expectation that the selection pressure on certain types

f cooperation decreases as group size rises. Such a negative group

ize effect requires that the gain sequence is sometimes decreas-

ng, meaning that individual incentives to cooperate are (at least

or some social contexts) decreasing in the number of cooperators

n the group. When this is the case, the decisions to cooperate are
trategic substitutes ( Bulow et al., 1985 ); equivalently, cooperation

s discounted or subject to diminishing returns. Anti-predator vig-

lance often follows this payoff structure, as the presence of other

igilant individuals usually disincentivizes individual investment in

igilance, i.e., there is a “many eyes” effect ( McNamara and Hous-

on, 1992; Pulliam, 1973 ); in extreme cases one vigilant individual

s enough for the group to be protected ( Bednekoff, 1997; Clutton-

rock et al., 1999 ). In agreement with our results, empirical and

heoretical studies indicate that vigilant behavior often decreases

ith group size ( Beauchamp, 2008; Elgar, 1989; McNamara and

ouston, 1992 ). 

Contrastingly, the positive group size effect we identify has

een less emphasized in evolutionary game theory (but see

umpter and Brännström 2008 and Cornforth et al. 2012 , who

emonstrate this effect in models with continuous strategies). In

n early paper, Dugatkin (1990) noted that, in his model of n -

erson reciprocity, the threshold frequency of cooperators needed

o invade a population of defectors decreased as group size in-

reased. Our analysis reveals that such a positive group size effect

s not specific to the payoff structure assumed in Dugatkin (1990) ,

ut that it holds more generally for any matrix game featuring un-

table interior rest points. As a necessary condition for the exis-

ence of unstable interior rest points is that the gain sequence is

ometimes increasing, the group size effect can be positive only

hen the individual incentives to cooperate are (for at least some

ocial contexts) increasing in the number of cooperators in the

roup. In this case, the decisions to cooperate are strategic com-

lements ( Bulow et al., 1985 ); equivalently, cooperation is syner-

istic or subject to increasing returns. A common form of syner-

istic cooperation occurs when a critical number of cooperators

s required for cooperation to be individually worthwhile. Exam-

les of such threshold effects have been documented in empiri-

al studies, and hypothesized to be a causal factor behind inverse

ensity dependence or Allee effects ( Courchamp et al., 1999 ). For

nstance, a large critical number of bark beetles is needed to over-

ome the defenses of the tree they attack ( Franceschi et al., 2005 ),

nd cooperative hunting often requires a critical number of hunters

o be energetically efficient ( Alvard and Nolin, 2002; Creel and

reel, 1995; MacNulty et al., 2014 ). Also, in group-hunting sailfish,

 larger number of hunters improves the hunting success of the

roup by allowing individuals to alternate their attacks ( Herbert-

ead et al., 2016 ) and by keeping group-level unpredictability high
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in the face of individual lateralization ( Kurvers et al., 2017 ). In all

of these cases of synergistic cooperation, our theory suggests that

larger groups can be more favorable to cooperation and less fa-

vorable to free riding. Indeed, this general prediction is in agree-

ment with both general models of synergistic cooperation with

continuous cooperative investments ( Cornforth et al., 2012 ), and

a recent mechanistic model of free riding in group-hunting sail-

fish ( Herbert-Read et al., 2016 ). 

We used a variety of public goods games to illustrate our re-

sults. In such games, both cooperators and defectors gain equal ac-

cess to the collective good produced by cooperators, i.e., the collec-

tive good is public. Notwithstanding the importance of these mod-

els, there are other social dilemmas for which public goods games

are not a natural description of the relevant strategic trade-offs. For

instance, social interactions can take the form of a collective action

problem where the produced good can be accessed only by cooper-

ators or only by defectors, i.e., the collective good is in some sense

excludable. Group size effects in such “club” and “charity” goods

games ( Peña et al., 2015 ) are readily amenable to analysis by ap-

plying our results. 

We conclude by noting that our analysis assumed populations

were well-mixed and hence without genetic structure. This as-

sumption is not always justified, as many social interactions take

place in spatially structured populations characterized by non-

negligible amounts of genetic structure ( Lehmann and Rousset,

2010; Rousset, 2004; Van Cleve, 2015 ). A simple way of model-

ing social evolution in these populations is to focus on a contin-

uously varying mixed strategy and to identify the convergence sta-

ble strategies of the resulting adaptive dynamics (e.g., Peña et al.

2015; Rousset 2004; Van Cleve and Lehmann 2013 ). In this case,

the counterpart to the gain function we have analyzed in this

paper is also a polynomial in Bernstein form, now with coeffi-

cients given by “inclusive gains from switching” depending on the

payoffs of the game, the group size, and demographic parame-

ters of the particular spatial model determining the degree of ge-

netic relatedness and the amount of local competition ( Peña et al.,

2015 ). In this light, the analysis conducted here is also relevant

to investigate group size effects in genetically structured popula-

tions, provided that the likely dependence of the inclusive gains

from switching on group size is taken into account. Investigating

the effects of group size on the evolution of cooperative behav-

iors under nontrivial population structure with the tools developed

here would complement recent effort s in this area ( Powers and

Lehmann, 2017; Shen et al., 2014; Van Cleve, 2017 ). 
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Appendix A 

A1. Proof of Proposition 1 

We first obtain Eq. (3) . To do so, we make use of two identities

established in the appendix of Motro (1991) . Using our notation for

the gain function and the gains from switching, these identities are

d g n 

d x 
(x ) = (n − 1) 

n −2 ∑ 

k =0 

(
n − 2 

k 

)
x k (1 − x ) n −2 −k ( d k +1 − d k ) , (7)

and 

g n +1 (x ) − g n (x ) = x 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k (1 − x ) n −1 −k ( d k +1 − d k ) . (8)
Applying Eq. (7) (which is nothing but the derivative property

f polynomials in Bernstein form; see, e.g., Peña et al., 2014 ) to

roup size n + 1 and dividing both sides of the resulting equation

y n yields 

1 

n 

d g n +1 

d x 
(x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k (1 − x ) n −1 −k ( d k +1 − d k ) . (9)

ubstituting Eq. (9) into Eq. (8) we obtain 

 n +1 (x ) − g n (x ) = 

x 

n 

d g n +1 

d x 
(x ) , 

rom which Eq. (3) is immediate. 

Consider any n satisfying n ≤ n < n . The following estab-

ishes that the replicator dynamic for group size n must have

 rest point in the interval (x ∗
n +1 ,� 

, 1) : Because g n +1 (x ) has no

oot in (x ∗n +1 ,� , 1) , g n +1 (x ) has the same sign as the deriva-

ive d g n +1 (x ∗
n +1 ,� 

) / d x for all x ∈ (x ∗
n +1 ,� 

, 1) . As the gain sequences

(d 0 , . . . , d n −1 ) and (d 0 , . . . , d n ) have the same initial sign (given

y the sign of the first non-zero gain from switching d k ) and the

ame number of sign changes s , they also have the same final

ign. Hence, the final sign of the gain sequence (d 0 , . . . , d n ) is the

ame as the sign of d g n +1 (x ∗n +1 ,� ) / d x, too ( Peña et al., 2014 , Prop-

rty 1). Therefore, for sufficiently large ˆ x ∈ (x ∗
n +1 ,� 

, 1) the sign of

 n ( ̂  x ) coincides with the sign of d g n +1 (x ∗
n +1 ,� 

) / d x . From Eq. (3) and

 n +1 (x ∗
n +1 ,� 

) = 0 we then have that g n (x ∗
n +1 ,� 

) and g n ( ̂  x ) have oppo-

ite signs, so that g n ( x ) has a root in the interval (x ∗n +1 ,� , ̂  x ) . Conse-

uently, the replicator dynamic for group size n has a rest point in

he interval (x ∗
n +1 ,� 

, ̂  x ) . For the case � = 1 this finishes the proof of

he proposition. 

Suppose � ≥ 2 and let n again satisfy n ≤ n < n . Consider (with

 = 1 , . . . , � − 1 ) any adjacent interior rest points x ∗
n +1 ,r 

< x ∗
n +1 ,r+1

f the replicator dynamic for group size n + 1 . As stable and

nstable rest points alternate, the derivatives d g n +1 (x ∗
n +1 ,r 

) / d x

nd d g n +1 (x ∗
n +1 ,r+1 

) / d x have opposite signs. As g n +1 (x ∗
n +1 ,r 

) =
 n +1 (x ∗n +1 ,r+1 ) = 0 holds, it follows from Eq. (3) that g n (x ∗n +1 ,r )

nd g n (x ∗
n +1 ,r+1 

) have opposite signs, too. Therefore, g n ( x ) has at

east one root in the interval (x ∗
n +1 ,r 

, x ∗
n +1 ,r+1 

) , with each such

oot corresponding to an interior rest point of the replicator dy-

amic for group size n . As there are � − 1 intervals of the form

(x ∗
n +1 ,r 

, x ∗
n +1 ,r+1 

) and the replicator dynamic for group size n has

n interior rest point in the interval (x ∗
n +1 ,� 

, 1) , this implies that

here is exactly one interior rest point of the replicator dynamic

or group size n in each of the intervals (x ∗
n +1 ,r 

, x ∗
n +1 ,r+1 

) for r =
 , . . . , � − 1 . Therefore, for all n = n , . . . , n − 1 and r = 1 , · · · , � − 1 ,

e have 

 

∗
n +1 ,r < x ∗n,r < x ∗n +1 ,r+1 . (10)

n conjunction with the inequality x ∗
n +1 ,� 

< x ∗n,� established in the

receding paragraph, Eq. (10) finishes the proof. 

2. Proof of Proposition 2 

Let � denote the number of interior rest points of the replicator

ynamic for a given group size n ∈ N . We begin by showing that

he number of interior rest points of the replicator dynamic for

roup size m ∈ N satisfying m < n must be at least � . This is trivially

rue for � = 0 , so consider � ≥ 1. By the same arguments as in the

roof of Proposition 1 , the replicator dynamic for group size n −
 has at least one rest point in the interval (x ∗n,� , 1) and, in case

 > 1, at least one rest point in each of the intervals (x ∗n,r , x 
∗
n,r+1 

)

or r = 1 , . . . , � − 1 . As there are � − 1 such intervals, the replicator

ynamic for group size n − 1 has at least as many rest points as the

eplicator dynamic for group size n . By a straightforward induction

rgument, it follows that the same conclusion obtains not only for

roup size n − 1 but for all group sizes m ∈ N satisfying m < n . 
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Suppose that the number of interior rest points for group size n̄

s equal to the number of sign changes s of the gain sequences. It

hen follows from the argument in the previous paragraph that, for

ll group sizes n ∈ N , the number of interior rest points is at least s .

n the other hand, the number of interior rest points of the repli-

ator dynamic for group size n cannot be larger than the number

f sign changes s of the gain sequence ( Peña et al., 2014 , Property

). Hence, independently of group size the number of interior rest

oints is s . 

The assumption that the regularity condition d g n (x ∗) / d x � = 0

olds for all interior rest points implies that all roots of the poly-

omials g n ( x ) are simple. Therefore, for all group sizes n ∈ N the

umber of interior rest points is either equal to the number of

ign changes s of the gain sequences or less by an even amount

 Peña et al., 2014 , Property 2). It follows that the number of inte-

ior rest points for the replicator dynamics for two different group

izes either are equal or differ by an even amount. As it has been

stablished above that the number of interior rest points cannot

ncrease with group size, this observation finishes the proof. 

3. Proof of Proposition 4 

From Result 4.1 in Peña et al. (2014) the condition ḡ n̄ > 0 (in

onjunction with the assumption on the sign pattern of the gain

equences) is sufficient to imply that the replicator dynamic for

roup size n̄ has two interior rest points x ∗
n̄ , 1 

< x ∗
n̄ , 2 

with the first of

hese being unstable and the second stable. As the gain sequences

ave two sign changes for all n ∈ N , Proposition 2 then implies that

he replicator dynamic for any group size n ∈ N has two interior

est points with the same stability pattern. From Proposition 1 ,

he inequalities x ∗n +1 , 1 < x ∗n, 1 and x ∗n +1 , 2 < x ∗n, 2 hold for all n sat-

sfying n ≤ n < n̄ . The remaining inequality in Eq. (4) follows from

q. (10) in the proof of Proposition 1 in Appendix A.1 . 

4. Proof of Proposition 5 

The existence of a unique interior rest point x ∗n and its stability

or all group sizes is immediate from Result 3 in Peña et al. (2014) .

Fix n satisfying n ≤ n < n and let 

 n (x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k (1 − x ) n −1 −k d n +1 

k 
. (11)

bserve that the assumption d n +1 
k 

≤ d n 
k 

for all k = 0 , 1 , . . . , n − 1

mplies h n ( x ) ≤ g n ( x ) for all x ∈ [0, 1], where g n ( x ) has been defined

n (6) . 

An argument identical to the one that we have used to obtain

q. (3) in Appendix A.1 , yields 

 n (x ) = g n +1 (x ) − x 

n 

d g n +1 

d x 
(x ) . (12)

s the rest point x ∗n +1 is stable, Eq. (12) implies h n (x ∗n +1 ) > 0

nd therefore g n (x ∗
n +1 

) > 0 . By the stability of the rest point

 

∗
n , we have g n ( x ) < 0 for all x ∈ (x ∗n , 1) . Therefore, the inequality

 n (x ∗
n +1 

) > 0 implies x ∗
n +1 

< x ∗n , which is the desired result. 

5. Proof of Proposition 6 

From Result 4.1 in Peña et al. (2014) the condition ḡ n > 0 (in

onjunction with the assumption on the sign pattern of the gain

equences) is sufficient to imply that for all group sizes n ∈ N ,

wo interior rest points x ∗n, 1 < x ∗n, 2 exist with x ∗n, 1 being unsta-

le and x ∗
n, 2 

being stable. The proof is then finished by observ-

ng that the same argument as in the proof of Proposition 5 in

ppendix A.4 implies the inequality x ∗n +1 , 2 < x ∗n, 2 for all n satisfy-

ng n ≤ n < n . 
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umpter, D.J.T. , Brännström, Å. , 2008. Sociobiology of Communication: An Interdis-

ciplinary Perspective. Oxford University Press, Oxford, UK, pp. 191–208 . 

aylor, M. , Ward, H. , 1982. Chickens, whales, and lumpy goods: alternative models
of public-goods provision. Polit. Stud. 30 (3), 350–370 . 

Uyenoyama, M. , Feldman, M. , 1980. Theories of kin and group selection: a popula-
tion genetics perspective. Theor. Popul. Biol. 17 (3), 380–414 . 

Van Cleve, J. , 2015. Social evolution and genetic interactions in the short and long
term. Theor. Popul. Biol. 103, 2–26 . 

Van Cleve, J. , 2017. Stags, hawks, and doves: individual variation in helping in social

evolution theory. Integrative and Comparative Biology, 57 . E435–E435 
an Cleve, J. , Akçay, E. , 2014. Pathways to social evolution: reciprocity, relatedness,

and synergy. Evolution 68 (8), 2245–2258 . 
an Cleve, J. , Lehmann, L. , 2013. Stochastic stability and the evolution of coordina-

tion in spatially structured populations. Theor. Popul. Biol. 89, 75–87 . 
eesie, J. , Franzen, A. , 1998. Cost sharing in a volunteer’s dilemma. J. Confl. Resol.

42 (5), 600–618 . 

eibull, J.W. , 1995. Evolutionary game theory. MIT Press, Cambridge, MA . 
est, S.A . , Buckling, A . , 2003. Cooperation, virulence and siderophore production in

bacterial parasites. Proc. R. Soc. Lond. B 270, 37–44 . 
est, S.A . , Griffin, A .S. , Gardner, A . , 2007. Evolutionary explanations for cooperation.

Curr. Biol. 17 (16), R661–R672 . 
Yip, E.C. , Powers, K.S. , Avilés, L. , 2008. Cooperative capture of large prey solves

scaling challenge faced by spider societies. Proc. Natl. Acad. Sci. 105 (33),

11818–11822 . 

http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0041
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0041
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0041
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0042
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0042
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0042
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0043
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0043
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0043
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0043
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0043
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0044
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0044
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0044
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0045
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0045
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0045
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0046
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0046
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0046
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0047
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0047
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0048
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0048
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0048
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0049
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0049
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0050
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0050
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0051
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0051
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0051
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0051
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0051
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0052
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0052
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0052
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0053
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0053
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0053
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0054
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0054
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0054
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0054
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0055
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0055
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0055
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0055
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0056
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0056
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0056
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0057
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0057
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0058
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0058
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0058
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0059
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0059
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0059
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0060
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0060
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0061
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0061
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0062
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0062
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0062
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0062
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0062
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0063
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0063
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0063
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0064
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0064
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0064
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0064
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0065
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0065
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0065
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0065
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0066
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0066
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0066
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0067
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0067
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0067
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0068
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0068
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0068
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0069
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0069
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0070
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0070
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0070
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0071
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0071
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0071
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0072
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0072
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0072
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0073
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0073
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0073
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0074
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0074
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0075
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0075
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0075
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0076
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0076
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0076
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0076
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0077
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0077
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0077
http://refhub.elsevier.com/S0022-5193(18)30374-6/sbref0077

	Group size effects in social evolution
	1 Introduction
	2 Model
	2.1 Social interactions
	2.2 Evolutionary dynamics

	3 Results
	3.1 General results
	3.2 Games with a unique interior rest point
	3.3 Games with two interior rest points

	4 Extension: games with gain sequences depending on group size
	5 Discussion
	 Acknowledgments
	 Appendix A
	A1 Proof of Proposition&#x00A0;1
	A2 Proof of Proposition&#x00A0;2
	A3 Proof of Proposition&#x00A0;4
	A4 Proof of Proposition&#x00A0;5
	A5 Proof of Proposition&#x00A0;6

	 References


