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Abstract

Reproduction is a defining feature of living systems. To reproduce, aggregates of biological

units (e.g., multicellular organisms or colonial bacteria) must fragment into smaller parts.

Fragmentation modes in nature range from binary fission in bacteria to collective-level frag-

mentation and the production of unicellular propagules in multicellular organisms. Despite

this apparent ubiquity, the adaptive significance of fragmentation modes has received little

attention. Here, we develop a model in which groups arise from the division of single cells

that do not separate but stay together until the moment of group fragmentation. We allow for

all possible fragmentation patterns and calculate the population growth rate of each associ-

ated life cycle. Fragmentation modes that maximise growth rate comprise a restrictive set of

patterns that include production of unicellular propagules and division into two similar size

groups. Life cycles marked by single-cell bottlenecks maximise population growth rate

under a wide range of conditions. This surprising result offers a new evolutionary explana-

tion for the widespread occurrence of this mode of reproduction. All in all, our model pro-

vides a framework for exploring the adaptive significance of fragmentation modes and their

associated life cycles.

Author summary

Mode of reproduction is a defining trait of all organisms, including colonial bacteria and

multicellular organisms. To produce offspring, aggregates must fragment by splitting into

two or more groups. The particular way that a given group fragments defines the life cycle

of the organism. For instance, insect colonies can reproduce by splitting or by producing

individuals that found new colonies. Similarly, some colonial bacteria propagate by fission

or by releasing single cells, while others split in highly sophisticated ways; in multicellular

organisms reproduction typically proceeds via a single-cell bottleneck phase. The space of

possibilities for fragmentation is so vast that an exhaustive analysis seems daunting.

Focusing on fragmentation modes of a simple kind we parametrise all possible modes of

group fragmentation and identify those modes leading to the fastest population growth
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rate. Two kinds of life cycle dominate: one involving division into two equal size groups,

and the other involving production of a unicellular propagule. The prevalence of these life

cycles in nature is consistent with our null model and suggests that benefits accruing from

population growth rate alone may have shaped the evolution of fragmentation mode.

Introduction

A requirement for evolution—and a defining feature of life—is reproduction [1–4]. Perhaps

the simplest mode of reproduction is binary fission in unicellular bacteria, whereby a single

cell divides and produces two offspring cells. In more complex organisms, such as colonial

bacteria, reproduction involves fragmentation of a group of cells into smaller groups. Bacterial

species demonstrate a wide range of fragmentation modes, differing both in the size at which

the parental group fragments and the number and sizes of offspring groups [5]. For example,

in the bacterium Neisseria, a diplococcus, two daughter cells remain attached forming a two-

celled group that separates into two groups of two cells only after a further round of cell divi-

sion [6]. Staphylococcus aureus, another coccoid bacterium, divides in three planes at right

angles to one another to produce grape-like clusters of about 20 cells from which single cells

separate to form new clusters [7]. Magnetotactic prokaryotes form spherical clusters of about

20 cells, which divide by splitting into two equally sized clusters [8].

These are just a few examples of a large number of diverse fragmentation modes, but why

should there be such a wide range of life cycles? Do fragmentation modes have adaptive signifi-

cance or are they simply the unintended consequences of particular cellular processes under-

pinning cell division? If adaptive, what selective forces shape their evolution? Can different life

cycles simply provide different opportunities to maximise population growth rate?

A starting point to answer these questions is to consider benefits and costs of group living

in cell collectives. Benefits may arise for various reasons. Cells within groups may be better

able to withstand environmental stress [9], escape predation [10, 11], or occupy new niches

[12, 13]. Also, via density-dependent gene regulation, cells within groups may gain more of a

limiting resource than they would if alone [14, 15]. On the other hand, cells within groups

experience increased competition and must also contend with the build up of potentially

toxic waste metabolites [16, 17]. Thus, it is reasonable to expect an optimal relationship

between group size and fragmentation mode that is environment and organism dependent

[18–21].

Here we formulate and study a matrix population model [22] that considers all possible

modes of group fragmentation. By determining the relationship between life cycle and popula-

tion growth rate, we show that there is, overall, a narrow class of optimal modes of fragmenta-

tion. When the process of fragmentation does not involve costs, optimal fragmentation modes

are characterised by a deterministic schedule and binary splitting, whereby groups fragment

into exactly two offspring groups. Contrastingly, when a cost is associated with fragmentation,

it can be optimal for a group to fragment into multiple propagules.

Our results show that the range of life cycles observed in simple microbial populations are

likely shaped by selection for intrinsic growth rate advantages inherent to different modes of

group fragmentation. While we do not consider complex life cycles, our results may contrib-

ute to understanding the emergence of life cycles underpinning the evolution of multicellular

life.

Fragmentation modes and the evolution of life cycles
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Methods

Group formation and fragmentation

We consider a population in which a single type of cell (or unit or individual) can form groups

(or complexes or aggregates) of increasing size by cells staying together after reproduction

[18]. We assume that the size of any group is smaller than n, and denote groups of size i by Xi

(see the list of used variables in Table 1). Groups die at rate di and cells within groups divide at

rate bi; hence groups grow at rate ibi. The vectors of birth rates b = (b1, . . ., bn−1) and of death

rates d = (d1, . . ., bn−1) make the costs and benefits associated to the size of the groups explicit,

thus defining the “fitness landscape” of our model.

Groups produce new complexes by fragmenting (or splitting), i.e., by dividing into smaller

groups. We further assume that fragmentation is triggered by growth of individual cells within

a given group. Consider a group of size i growing into a group of size i + 1. Such a group can

either stay together or fragment. If it fragments, it can do so in one of several ways. For exam-

ple, a group of size 4 can give rise to the following five “fragmentation patterns”: 4 (the group

does not split, but stays together), 3+1 (the group splits into two offspring groups: one of size

3, and one of size 1), 2+2 (the group splits into two groups of size 2), 2+1+1 (the group splits

into one group of size 2 and two groups of size 1), and 1+1+1+1 (the group splits into four

independent cells). Mathematically, such fragmentation patterns correspond to the five parti-

tions of 4 (a partition of a positive integer i is a way of writing i as a sum of positive integers

without regard to order; the summands are called parts [23]). We use the notation κ ‘ ℓ to

indicate that κ is a partition of ℓ, for example 2 + 2 ‘ 4. The number of partitions of ℓ is given

by zℓ, e.g., there are z4 = 5 partitions of 4.

We consider an exhaustive set of fragmentation modes (or “fragmentation strategies”)

implementing all possible ways groups of maximum size n can grow and fragment into smaller

groups, including both pure and mixed modes (Fig 1). A pure fragmentation mode is charac-

terised by a single partition κ ‘ ℓ, i.e., groups of size i< ℓ grow up to size ℓ and then fragment

according to partition κ ‘ ℓ. The partition κ can then be used to refer to the associated pure

strategy. The total number of pure fragmentation strategies is
Pn

‘¼2
ðz‘ � 1Þ, which grows

quickly with n: There are 128 pure fragmentation modes for n = 10, but 1,295,920 for n = 50. A

mixed fragmentation mode is given by a probability distribution over the set of pure fragmen-

tation modes. The relationship between pure and mixed fragmentation modes is hence similar

to the one between pure strategies and mixed strategies in evolutionary game theory [24].

One of our main results is that mixed fragmentation modes are always dominated by pure

Table 1. List of variables.

Xi a group of size i cells

xi abundance of groups of size i

x vector of abundances xi

bi birth rate of cells in a group of i cells

di death rates of groups of i cells

n maximal group size

ζi the number of partitions of integer i

πi(κ) the number of parts equal to i in the partition κ
A projection matrix

λ1 population growth rate

M maximal benefit under monotonic fitness landscapes

α degree of complementarity under monotonic fitness landscapes

https://doi.org/10.1371/journal.pcbi.1005860.t001
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fragmentation modes. Hence, we focus our exposition on pure fragmentation modes, and

leave the details of how to specify mixed fragmentation modes to the Supporting Information

(S1 Text, Appendix A).

Biological reactions and population dynamics

Together with the fitness landscape given by the vectors of birth rates b and death rates d, each

fragmentation strategy specifies a set of biological reactions. Consider the pure mode κ ‘ ℓ,

whereby groups grow up to size ℓ and then split according to fragmentation pattern κ. A set of

reactions

Xi !
di

0; i ¼ 1; . . . ; ‘ � 1 ð1Þ

models the death of groups; an additional set of reactions

Xi � !
ibi Xiþ1; i ¼ 1; . . . ; ‘ � 2 ð2Þ

Fig 1. Life cycles and fragmentation modes. A Cells within groups of size i divide at rate bi, hence groups

grow at rate ibi; groups die at rate di. The sequences bi and di define the fitness landscape of the model. We

consider an exhaustive set of possible fragmentation modes, comprising both pure and mixed life cycles. In

general, when growing from size i to size i + 1, groups stay together with probability qi+1, or fragment

according to fragmentation pattern κwith probability qκ. Each fragmentation pattern (determining the number

and size of offspring groups) can be identified with a partition of i + 1, i.e., a way of writing i + 1 as a sum of

positive integers, that we denote by κ ‘ i + 1. B Pure fragmentation modes are strategies with degenerate

probability distributions over the set of partitions (so that qκ = 1 for exactly one fragmentation pattern, including

staying together). Here we illustrate the pure fragmentation mode 2 + 1 + 1, for which q2 = q3 = q2+1+1 = 1, and

qκ = 0 for all other κ.

https://doi.org/10.1371/journal.pcbi.1005860.g001
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models the growth of groups (without splitting) up to size ℓ − 1. Finally, one reaction of the

type

X‘� 1

ð‘� 1Þb‘� 1
�����!

X‘� 1

i¼1

piðkÞXi; ð3Þ

models the growth of the group from size ℓ − 1 to size ℓ and its immediate fragmentation in a

way described by fragmentation pattern κ ‘ ℓ, where parts equal to i appear a number πi(κ) of

times. For instance, for the pure fragmentation mode 2 + 1 + 1 ‘ 4, Eq (3) becomes

X3 � !
3b3 X2 þ 2X1;

which stipulates that groups of size 3 grow to size 4 at rate 3b3 and split into one group of size 2

and two groups of size 1; here, π1(2 + 1 + 1) = 2, π2(2 + 1 + 1) = 1, π3(2 + 1 + 1) = 0.

The sets of reactions (1), (2) and (3) give rise to the system of differential equations

_x1 ¼ � ðb1 þ d1Þx1 þ ð‘ � 1Þb‘� 1p1ðkÞx‘� 1;

_xi ¼ ði � 1Þbi� 1xi� 1 � ðibi þ diÞxi þ ð‘ � 1Þb‘� 1piðkÞx‘� 1; i ¼ 2; . . . ; ‘ � 1

where xi denotes the abundance of groups of size i. This is a linear system that can be repre-

sented in matrix form as

_x ¼ Ax; ð4Þ

where x = (x1, x2, . . ., xℓ−1) is the vector of abundances of the groups of different size and

A ¼

� b1 � d1 0 � � � 0 ð‘ � 1Þb‘� 1p1ðkÞ

b1 � 2b2 � d2 0 ..
.

ð‘ � 1Þb‘� 1p2ðkÞ

0 2b2 � 3b3 � d3 0 ð‘ � 1Þb‘� 1p3ðkÞ

..

. ..
. . .

. . .
. ..

.

0 0 � � � ð‘ � 2Þb‘� 2 ð‘ � 1Þb‘� 1ðp‘� 1ðkÞ � 1Þ � d‘� 1

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

is the projection matrix determining the population dynamics.

Population growth rate

For any fragmentation mode and any fitness landscape, the projection matrix A is “essentially

non-negative” (or quasi-positive), i.e., all the elements outside the main diagonal are non-neg-

ative [25]. This implies that A has a real leading eigenvalue λ1 with associated non-negative left

and right eigenvectors v and w. In the long term, the solution of Eq (4) converges to that of an

exponentially growing population with a stable distribution, i.e.,

lim
t!1

xðtÞ ¼ el1tw:

The leading eigenvalue λ1 hence gives the total population growth rate in the long term, and its

associated right eigenvector w = (w1, . . ., wm−1) gives the stable distribution of group sizes so

that, in the long term, the fraction xi of complexes of size i in the population is proportional

to wi.

Fragmentation modes and the evolution of life cycles
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Dominance and optimality

For a given fitness landscape {b, d}, we can take the leading eigenvalue λ1(κ; b, d) as a measure

of fitness of fragmentation mode κ, and consider the competition between two different frag-

mentation modes, κ1 and κ2. Indeed, under the assumption of no density limitation, the evolu-

tionary dynamics are described by two uncoupled sets of differential equations of the form (4):

one set for κ1 and one set for κ2. In the long term, κ1 is not outcompeted by κ2 if λ1(κ1; b, d)�

λ1(κ2; b, d); we then say that fragmentation mode κ1 dominates fragmentation mode κ2. We

also say that strategy κi is optimal for given birth rates b and death rates d if it achieves the larg-

est growth rate among all possible fragmentation modes.

Two classes of fitness landscape: Fecundity landscapes and survival

landscapes

Fitness landscapes capture the many advantages or disadvantages associated with group living.

These advantages may come either in the form of additional resources available to groups

depending on their size or as an improved protection from external hazards. For our numeri-

cal examples, we consider two classes of fitness landscape, each representing only one of these

factors. In the first class, that we call “fecundity landscapes”, group size affects only the birth

rates of cells (while we impose di = 0 for all i). In the second class, that we call “survival land-

scapes”, group size affects only death rates (and we impose bi = 1 for all i).

Examples for n = 3

To fix ideas, consider all pure fragmentation modes with a maximum group size n = 3. These

are 1+1 (“binary fission”, a partition of 2), 2+1 (“unicellular propagule”, a partition of 3), and 1

+1+1 (“ternary fission” a partition of 3). The three associated projection matrices are given by

A1þ1 ¼ b1 � d1ð Þ;A2þ1 ¼
� b1 � d1 2b2

b1 � d2

 !

;A1þ1þ1 ¼
� b1 � d1 6b2

b1 � 2b2 � d2

 !

:

The three growth rates are

l
1þ1

1
¼ b1 � d1; ð5aÞ

l
2þ1

1
¼
� ðb1 þ d1 þ d2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb1 þ d1 � d2Þ
2
þ 8b1b2

q

2
; ð5bÞ

l
1þ1þ1

1
¼
� ðb1 þ 2b2 þ d1 þ d2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
1
þ 2b1ð10b2 þ d1 � d2Þ þ ð2b2 � d1 þ d2Þ

2

q

2
: ð5cÞ

In the particular case of a fecundity landscape given by b1 = 1 and b2 = 15/8 (and d1 = d2 =

0), these growth rates reduce to l
1þ1

1
¼ 1, l

2þ1

1
¼ 3=2 and l

1þ1þ1

1
¼ 5=4, and we have

l
2þ1

1
> l

1þ1þ1

1
> l

1þ1

1
. We then say that ternary and binary fission are dominated by the uni-

cellular propagule strategy.

Results

Mixed fragmentation modes are dominated

Although for simplicity we focus our exposition on pure fragmentation strategies, we also con-

sider mixed fragmentation strategies, i.e., probabilistic strategies mixing between different

Fragmentation modes and the evolution of life cycles
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pure modes. A natural question to ask is whether a mixed fragmentation mode can achieve a

faster growth rate than a pure mode. We find that the answer is no. For any fitness landscape

and any maximum group size n, mixed fragmentation modes are dominated by a pure frag-

mentation mode (S1 Text, Appendix B). Thus, the optimal fragmentation mode for any fitness

landscape is pure.

As an example, consider fragmentation modes 1+1 and 2+1, and a mixed fragmentation

mode mixing between these two so that with probability q splitting follows fragmentation pat-

tern 2+1 and with probability 1 − q it follows fragmentation pattern 1+1. For any mixing prob-

ability q and any fitness landscape, the growth rate of the mixed fragmentation mode is given

by

l
q
1
¼

b1ð1 � 2qÞ � ðd1 þ d2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd1 þ d2 � ð1 � 2qÞb1Þ
2
þ 4b1ð2qb2 þ ð1 � 2qÞd2Þ

q

2
;

which can be shown to always lie between the growth rates of the pure fragmentation modes,

i.e., either l
1þ1

1
� l

q
1
� l

2þ1

1
or l

2þ1

1
� l

q
1
� l

1þ1

1
holds and the mixed fragmentation mode is

dominated (S1 Text, Appendix C).

To further illustrate our analytical findings, consider groups of maximum size n = 4 and a

fecundity landscape given by b = (1, 2, 1.4). We randomly generated 107 mixed fragmentation

modes by drawing the probabilities for growth without splitting from an uniform distribution

and letting the probabilities of splitting according to a given fragmentation pattern be propor-

tional to exponential random variables with rate parameter equal to one. We then calculated

the growth rate of these mixed strategies together with the growth rate of the seven pure frag-

mentation modes available for n = 4, i.e., 1+1, 2+1, 1+1+1, 3+1, 2+2, 2+1+1, and 1+1+1+1 (Fig

2A). In line with our analysis, a pure fragmentation mode (namely 2+2, whereby groups grow

up to size 4 and then immediately split into two bicellular groups) achieves a higher growth

rate than the growth rate of any mixed fragmentation mode, and the highest growth rate

overall.

Optimal fragmentation modes are characterised by binary splitting

Having shown that mixed fragmentation modes are dominated, we now ask which pure

modes might be optimal. We find that, within the set of pure modes, “binary” fragmentation

modes (whereby groups split into exactly two offspring groups) dominate “nonbinary” frag-

mentation modes (whereby groups split into more than two offspring groups). To illustrate

this result, consider the simplest case of n = 3 and the three modes 1+1, 2+1, and 1+1+1, out

of which 1+1 and 2+1 are binary, and 1+1+1 is nonbinary. Comparing their growth rates (as

given in Eq (5), we find that l
1þ1

1
� l

1þ1þ1

1
holds if b1 − b2� d1 − d2 and that l

2þ1

1
� l

1þ1þ1

1

holds if b1 − b2� d1 − d2. Thus, for any fitness landscape, 1+1+1 is dominated by either 2+1

or by 1+1. More generally, we can show that for any nonbinary fragmentation mode, one

can always find a binary fragmentation mode achieving a greater or equal growth rate under

any maximum group size n and fitness landscape (S1 Text, Appendices D and E). Taken

together, our analytical results imply that the set of optimal fragmentation modes is count-

able and, even for large n, relatively small. Consider the proportion of pure fragmentation

modes that can be optimal, which is defined by the ratio between the number of binary

fragmentation modes and the total number of pure fragmentation modes. While this ratio is

relatively high for small n (e.g., 2/3 � 0.67 for n = 3 or 4/7 � 0.57 for n = 4), it decreases

sharply with increasing n (e.g., 25/128� 0.20 for n = 10 and 625/1295920 � 0.00048 for

n = 50).

Fragmentation modes and the evolution of life cycles
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Fig 2B shows the growth rate of the seven pure modes for n = 4 for a fecundity landscape

given by b = (1, b2, 1.4) as a function of b2. In line with our analysis, only binary fragmentation

modes (1+1, 2+1, 2+2, and 3+1) can be optimal, while nonbinary fragmentation modes

(1+1+1, 2+1+1, and 1+1+1+1) are dominated. Which particular binary mode is optimal

depends on the particular value of the birth rate of groups of two cells. For small values

(b2 ≲ 0.45), the fecundity of such groups is too low, and the optimal fragmentation mode is

1+1. For intermediary values (0.45 ≲ b2 ≲ 1.11), the reproduction efficiency of groups of three

cells mitigates the inefficiency of cell pairs, and the mode 3+1 becomes optimal. For larger val-

ues (1.11 ≲ b2 ≲ 3.52), the optimal fragmentation mode is 2+2, where no single cells are pro-

duced. Finally, for very large values (b2 ≲ 3.52), the optimal fragmentation mode is 2+1; this

ensures that one offspring group emerges at the most productive bicellular state.

More generally, which particular fragmentation mode within the class of binary splitting

strategies is optimal depends on all birth rates and death rates characterising the fitness land-

scape. To further explore this issue, we identified the optimal fragmentation modes for general

fecundity and survival landscapes for the simple case of n = 4 (Fig 3; S1 Text, Appendix F).

Since we can set b1 = 1 and min(d) = 0 without loss of generality (S1 Text, Appendix D), we

represent fitness landscapes as points in a two-dimensional parameter space with coordinates

b2/b1 and b3/b1 for fecundity landscapes, and coordinates d2 − d1 and d3 − d1 for survival land-

scapes. The exact boundaries of the parameter regions where a given fragmentation mode is

optimal are often nontrivial mathematical expressions. Nevertheless, we identify general

Fig 2. The optimal fragmentation mode is pure and characterised by binary fragmentation. A Mixed fragmentation strategies are

dominated. Here we show the empirical probability distribution of the growth rate of mixed fragmentation modes for n = 4 (generated from a

sample of 107 randomly generated fragmentation modes) subject to the fitness landscape {b, d} = {(1, 2, 1.4), (0, 0, 0)}. The growth rates of all

seven pure fragmentation modes for n = 4 are indicated by arrows. In this case, 2+2 achieves the maximal possible growth rate among all

possible fragmentation modes. B Optimal fragmentation modes are characterised by binary splitting. Population growth rate (λ1) for all seven

pure fragmentation modes for n = 4 subject to the fitness landscape {b, d} = {(1, b2, 1.4), (0, 0, 0)} as a function of the birth rate of groups of size

2, b2. Each of the four fragmentation modes characterised by binary fragmentation (1+1, 2+1, 2+2, and 3+1) can be optimal depending on the

value of b2. Contrastingly, nonbinary fragmentation modes (1+1+1, 1+1+1+1, and 2+1+1) are never optimal.

https://doi.org/10.1371/journal.pcbi.1005860.g002
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patterns dictating which fragmentation mode will be optimal. Consider first the optimality

map for fecundity landscapes (Fig 3A). A sufficient condition for the unicellular life cycle 1+1

to be optimal is that the birth rate of single cells is larger than the birth rate of pairs and triplets

of cells (b1 > b2 and b1 > b3). In this case, there is no apparent reason why a fragmentation

mode different than 1+1 would be optimal. Perhaps less trivially, 1+1 can also be optimal in

cases where single cells are less fertile than groups of three cells, i.e., even if b1 < b3 holds. This

requires the birth rate b2 to be so small that the fecundity benefits accrued when reaching the

size of three cells are not enough to compensate for the unavoidable penalty of passing through

the less prolific state of two cells. Turning now to fragmentation mode 2+1, a necessary condi-

tion for this mode to be optimal is that pairs of cells have the largest birth rate, i.e., that b2 > b1

and b2 > b3 holds. Similarly, mode 3+1 can only be optimal if b3 > b1 and b3 > b2, so that

groups of three have the largest birth rate. In these two cases, the optimal fragmentation mode

(either 2+1 or 3+1) keeps one of the two offspring groups at the most productive size. Finally,

for fragmentation mode 2+2 to be optimal, it is necessary that single cells have the lowest birth

rate, i.e., that b2 > b1 and b3 > b1 holds. In this case, the fragmentation mode ensures that the

life cycle of the organism never goes through the least productive unicellular phase. Under sur-

vival landscapes, fitness increases as death rates decrease. Taking this qualitative difference

into account, the map of optimal fragmentation modes under survival landscapes (Fig 3B) fol-

lows similar qualitative patterns as the one under fecundity landscapes.

Costly fragmentation allows for optimal nonbinary fragmentation and

multicellularity without group benefits

So far we have assumed that fragmentation is costless. However, fragmentation processes can

be costly to the parental group undergoing division. This is particularly apparent in cases

Fig 3. Optimal fragmentation modes for fecundity and survival landscapes (costless fragmentation). A Life

cycles achieving the maximum population growth rate for n = 4 under fecundity landscapes (i.e., d1 = d2 = d3 = 0). In this

scenario, fragmentation mode 2+2 is optimal for most fitness landscapes. B Life cycles achieving the maximum

population growth rate for n = 4 under survival landscapes (i.e., b1 = b2 = b3 = 1). In this scenario, fragmentation modes

emitting a unicellular propagule (1+1, 2+1, 3+1) are optimal for most parameter values. We use ratios of birth rates and

differences between death rates as axes because one can consider b1 = 1 and min(d1, d2, d3) = 0 without loss of

generality (S1 Text, Appendix D). Shaded areas are obtained from the direct comparison of numerical solutions, lines

are found analytically (S1 Text, Appendix F).

https://doi.org/10.1371/journal.pcbi.1005860.g003
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where some cells need to die in order for fragmentation of the group to take place. Examples

in simple multicellular forms include Volvox, where somatic cells constituting the outer layer

of the group die upon releasing the offspring colonies and are not passed to the next generation

[26], the breaking of filaments in colonial cyanobacteria [27], and the fragmentation of “snow-

flake-like” clusters of the yeast Saccharomyces cerevisiae [28]. Fragmentation costs may also be

less apparent. For instance, fragmentation may cost resources that would otherwise be avail-

able for the growth of cells within a group.

To investigate the effect of fragmentation costs on the set of optimal fragmentation modes,

we consider two cases: proportional costs and fixed costs. For proportional costs, we assume

that π − 1 cells die in the process of a group fragmenting into π parts. This case captures the

fragmentation process of filamentous bacteria, where filament breakage entails the death of

cells connecting the newly formed fragments [27]. For fixed costs, we assume that exactly one

cell is lost upon each fragmentation event. This scenario is loosely inspired by yeast colonies

with a tree-like structure, where cells can be connected with many other cells, so the death of a

single cell may release more than two offspring colonies [19, 28]. Mathematically, both cases

imply that fragmentation patterns are described by partitions of a number smaller than the

size of the parent group (S1 Text, Appendix G).

For both kinds of costly fragmentation, we can show that mixed fragmentation modes are

still dominated by pure fragmentation modes (the proof given in S1 Text, Appendix B also

holds in this case). Moreover, for proportional costs the optimal fragmentation mode is also

characterised by binary fragmentation, as it is the case for costless fragmentation (S1 Text,

Appendix H). This makes intuitive sense, as the addition of a penalty for splitting into many

fragments should further reinforce the optimality of binary splitting (whereby only one cell

per fragmentation event is lost). In contrast, we find that under fragmentation with fixed costs

the optimal fragmentation mode can involve nonbinary fragmentation, i.e., division into more

than two offspring groups. This result can be readily illustrated for the case of n = 4 where the

nonbinary mode 1+1+1 is optimal for a wide range of fitness landscapes (Fig 4).

Another interesting feature of costly fragmentation (implemented via either proportional

or fixed costs) is that fragmentation modes involving the emergence of large groups can be

optimal even if being in a group does not grant any fecundity or survival advantage to cells. If

fragmentation is costless, as we assumed before, fitness landscapes for which groups perform

worse than unicells (that is, bi/b1� 1 for fecundity landscapes or di − d1� 0 for survival land-

scapes) lead to optimal fragmentation modes where splitting occurs at the minimum possible

group size i = 2, so that no multicellular groups emerge in the population (cf. Fig 3). In con-

trast, under costly fragmentation some of these fitness landscapes allow for the evolutionary

optimality of fragmentation modes according to which groups split at the maximum size n = 4

(2+1 under proportional costs, and 1+1+1 under fixed costs), and hence for life cycles where

multicellular phases are persistent. This seems paradoxical until one realises that by staying

together as long as possible groups delay as much as possible the inevitable cell loss associated

to a fragmentation event. Thus, even if groups are less fecund or die at a higher rate than inde-

pendent cells, staying together might be adaptive if splitting apart is too costly.

Synergistic interactions between cells promote the production of

unicellular propagules, while diminishing returns promote equal binary

fragmentation

Next, we focus on fitness landscapes for which either the birth rate of cells increases with

group size (fecundity landscapes where larger groups are always more productive) or the death

rate of groups decreases with group size (survival landscapes where larger groups always live
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longer). In this case, and for a maximum group size n = 4, the set of optimal modes is given by

2+2 and 3+1 if there are no fragmentation costs (Fig 3), by 2+1 if fragmentation costs are pro-

portional to the number of fragments (Fig 3A and 3B), and by 2+1 and 1+1+1 if fragmentation

involves a fixed cost of one cell (Fig 4C and 4D).

To investigate larger maximum group sizes n in a simple but systematic way, we consider

fecundity landscapes with birth rates given by bi = 1 + Mgi and survival landscapes with death

rates given by di = M(1 − gi), where gi = [(i − 1)/(n − 2)]α [29] models the fecundity or survival

benefits associated to group size i and M> 0 is the maximum benefit (Fig 5). The parameter α
is the degree of complementarity between cells; it measures how important the addition of

another cell to the group is in producing the maximum possible benefit M [30]. For low

degrees of complementarity (α< 1), the sequence gi is strictly concave and each additional cell

Fig 4. Optimal fragmentation modes for fecundity and survival landscapes (costly fragmentation). For

proportional costs (panels A and B), splitting into π parts involves the loss of π − 1 cells. In this case, and for

n = 4, only two pure modes are possible: 2+1 (whereby a 4-unit group splits into a pair of cells and a single cell

and loses one cell) and 1+1 (whereby a group of three splits into two single cells and loses one cell). For fixed

costs (panels C and D), splitting involves the loss of a single cell, no matter the kind of partition. In this case,

and for n = 4, an additional mode is possible: 1+1+1 (whereby a 4-unit group splits into three single cells and

loses one cell). This last nonbinary mode can be optimal under a wide range of parameters.

https://doi.org/10.1371/journal.pcbi.1005860.g004
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contributes less to the per capita benefit of group living [31] and groups of all sizes achieve the

same functionality as α tends to zero. If α = 1, the sequence gi is linear, and each additional cell

contributes equally to the fecundity or survival of the group. Finally, for high degrees of com-

plementarity (α> 1), the sequence gi is strictly convex and each additional cell improves the

performance of the group more than the previous cell did. In the limit of large α, the advan-

tages of group living materialise only when complexes achieve the maximum size n − 1 [31].

We numerically calculate the optimal fragmentation modes for n = 20 (costless fragmenta-

tion) or n = 21 (costly fragmentation) and the fitness landscapes described above for parameter

values taken from 0.01� α� 100 and 0.02�M� 50 (Figs 6 and 7). In line with our general

analytical results, optimal fragmentation modes are always characterised by binary splitting

when fragmentation is costless or when it involves proportional costs, while nonbinary split-

ting can be optimal only if fragmentation involves a fixed cost. We also find that, for each

value of α and M, and for both costless and costly fragmentation, the optimal fragmentation

mode is one where fragmentation occurs at the largest possible size. This is expected since the

benefit sequence is increasing in group size and thus groups of maximum size perform better,

either by achieving the largest birth rate per unit (fecundity landscapes) or the lowest death

rate (survival landscapes). Which particular fragmentation mode maximizes the growth rate

depends nontrivially on whether fragmentation is costless or costly (and in the latter case also

on how such costs are implemented), on the kind of group size benefits (fecundity or survival),

Fig 5. Advantages of group living. Group size benefit gi = [(i − 1)/(n − 2)]α as a function of group size for

different values of the degree of complementarity α. If α < 1, gi is concave; if α = 1, gi is linear; if α > 1, gi is

convex.

https://doi.org/10.1371/journal.pcbi.1005860.g005
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on the maximum possible benefit M, and on the degree of complementarity α. Despite this

apparent complexity, some general patterns can be identified.

Let us focus on the case of fecundity landscapes and first fasten attention on the scenario of

costless fragmentation (Fig 6A). A salient feature of this case is the prominence of two

Fig 6. Optimal life cycles under monotonic fecundity landscapes. Birth rates are given by bi = 1 + Mgi where gi = [(i − 1)/(n − 2)]α. A Costless

fragmentation, n = 20. B Fragmentation with proportional costs, n = 21. C Fragmentation with fixed costs, n = 21. For costless fragmentation and

fragmentation with proportional costs, only binary modes 19+1, 18+2, . . ., 10+10 are optimal. In these cases, diminishing returns (α < 1) make equal binary

fragmentation (10+10) optimal. Also, optimality of the unicellular propagule strategy (19+1) requires increasing returns (α > 1). For fragmentation with fixed

costs, nonbinary modes 7+7+6, . . ., 1+. . .+1 can also be optimal.

https://doi.org/10.1371/journal.pcbi.1005860.g006

Fig 7. Optimal life cycles under monotonic survival landscapes. Death rates are given by di = M(1 − gi) where gi = [(i − 1)/(n − 2)]α. A Costless

fragmentation, n = 20. B Fragmentation with proportional costs, n = 21. C Fragmentation with fixed costs, n = 21. For costless fragmentation and

fragmentation with proportional costs, only binary modes 19+1, 18+2,. . ., 10+10 are optimal. In these cases, diminishing returns to scale (α < 1) make

equal binary fragmentation (10+10) optimal. Also, optimality of the unicellular propagule strategy (19+1) requires increasing returns to scale (α > 1). For

fragmentation with fixed costs, nonbinary modes 7+7+6,. . .,1+. . .+1 can also be optimal.

https://doi.org/10.1371/journal.pcbi.1005860.g007
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qualitatively different fragmentation modes: the “equal binary fragmentation” strategy 10+10

(whereby offspring groups have sizes as similar as possible) and the “unicellular propagule”

strategy 19+1 (whereby offspring groups have sizes as different as possible). A sufficient condi-

tion for equal binary fragmentation to be optimal is that increase in size is characterised by

diminishing returns. The intuition behind this result is that, if the degree of complementarity

is small, then groups (complexes of size i� 2) have similar performance, while independent

cells (i = 1) are at a significant disadvantage. Therefore, the optimal strategy is to ensure that

both offspring groups are as large as possible, and hence of the same size. However, equal

binary fragmentation can be also optimal for synergistic interactions, provided that comple-

mentarity is not too high. In contrast, the unicellular propagule strategy is optimal only for rel-

atively high degrees of complementarity. This is because when complementarity is high only

the largest group can reap the benefits of group living; in this case, the optimal mode is to have

at least one offspring of very large size. Compared to 19+1 and 10+10, other binary splitting

strategies are optimal in smaller regions of the parameter space, and in all cases only for syner-

getic interactions between cells.

Consider now the effects of introducing fragmentation costs proportional to the number of

fragments (Fig 6B). Here, the region where the unicellular propagule strategy is optimal

shrinks to the corner of the parameter space where benefits of group living and degree of com-

plementarity are maximum, while the region of optimality for equal binary fragmentation

expands. This makes intuitive sense. With fragmentation costs, the largest offspring group

resulting from fragmenting according to the unicellular propagule strategy is of size 19, and

hence always on the brink of fragmentation (once it grows to size 21) and incurring one cell

loss. When group benefits are not high and synergistic enough, the unicellular propagule strat-

egy is dominated by fragmentation modes (in particular, equal binary fragmentation) having

smaller offspring for which the costs of fragmentation are not so immediate.

Finally, if costs of fragmentation are not proportional but fixed (Fig 6C), then two classes of

nonbinary splitting become optimal in regions of the parameter space where equal binary frag-

mentation was optimal under proportional costs: (i) “multiple fission” (1+1+. . .+1) which is in

general favored for small maximum benefit and increasing returns, and (ii) “multiple groups”

(modes 2+2+. . .+2, 3+3+3+3+3+3+2, 4+4+3+3+3+3, 4+4+4+4+4, 5+5+5+5, and 7+7+6)

which are often optimal for diminishing returns.

Fig 7 show the results for survival landscapes. The main difference in this case is that the

unicellular propagule strategy can be the optimal strategy even when group living is character-

ised by diminishing returns. In general, fecundity benefits make equal binary fragmentation

optimal under more demographic scenarios, while survival benefits make the unicellular prop-

agule strategy optimal under more demographic scenarios.

Discussion

Reproduction is such a fundamental feature of living systems that the idea that the mode of

reproduction may be shaped by natural selection is easily overlooked. Here, we analysed a

matrix population model that captures the demographic dynamics of complexes that grow by

staying together and reproduce by fragmentation. The costs and benefits associated with

group size ultimately determine whether or not a single cell fragments into two separate

daughter cells upon cell division, or whether those daughter cells remain in close proximity,

with fragmentation occurring only after subsequent rounds of division. We allowed for a vast

and complete space of fragmentation strategies, including pure modes (specifying all possible

combinations of size at fragmentation and fragmentation pattern) and mixed modes (specify-

ing all probability distributions over the set of pure modes), and identified those modes
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achieving a maximum growth rate for given fecundity and survival size-dependent rates. Our

research questions and methodology thus resonates with previous studies in life history theory

[32, 33]. In the language of this field, our fragmentation strategies specify both the size at first

reproduction and clutch size, where the latter is subject to a very specific trade-off between the

number and size of offspring mathematically given by integer partitions.

We found that for any fitness landscape, the optimal life cycle is always a deterministic frag-

mentation mode involving the regular schedule of group development and fragmentation.

This makes intuitive sense given our assumption that the environment is constant. However,

this result might not hold if the environment is variable so that the fitness landscape changes

over time. In this case different pure fragmentation modes will be optimal at different times,

and natural selection might favour life cycles that randomly express a subset of locally optimal

fragmentation patterns. Indeed, the evolution of variable phenotypes in response to changing

environmental conditions (also known as bet hedging [34, 35]) has been demonstrated in

other life history traits, such as germination time in annual plants [36], and capsulation in bac-

teria [37]. The extent to which mixed fragmentation modes can evolve via a similar mechanism

is beyond the scope of this paper, but it can be addressed in future work by applying existing

theory on matrix population models in stochastic environments [22].

We found that when fragmentation is costless, only strategies involving binary splitting

(i.e., fragmentation into exactly two parts) are optimal. This result holds for all possible fitness

landscapes, and hence any specification of how fecundity or survival benefits might accrue to

group living. In particular, the optimal fragmentation mode under monotonic fitness land-

scapes is generally one of two types: equal binary fragmentation, which involves fission into

two equal size groups, and the unicellular propagule strategy, which involves the production of

two groups, one comprised of a single cell. Equal fragmentation is favoured when there is a sig-

nificant advantage associated with formation of even the smallest group, whereas production

of a unicellular propagule is favoured when the benefits associated with group size are not evi-

dent until groups become large. This makes intuitive sense: when advantages arise when

groups are small, it pays for offspring to be in groups (and not single cells). Conversely, when

there is little gain until group size is large, it makes sense to maintain one group that reaps this

advantage. Interestingly, two bacteria that form groups and are well studied from a clinical

perspective, Neisseria gonorrhoeae and Staphylococcus aureus, both show evidence of the above

binary splitting fragmentation modes: Neisseria gonorrhoeae divide into groups of two equal

sizes [6], while Staphylococcus aureus divide into one large group plus a unicellular propagule

[7]. This leads to questions concerning the nature of the fitness landscape occupied by these

bacteria and the basis of any collective level benefit as assumed by our model.

Once cell loss upon fragmentation is incorporated as a factor in collective reproduction, a

wider range of fragmentation patterns becomes optimal. When fragmentation costs are fixed

to a given number of cells, optimal fragmentation modes include those where splitting involves

the production of multiple offspring. Among these, a prominent fragmentation strategy is

multiple fission, where a group breaks into multiple independent cells. Such a fragmentation

mode is reminiscent of palintomy in the volvocine algae [38]. A key difference between our

“multiple fission” and palintomy is that the former involves a group of cells growing up to a

threshold size at which point fragmentation happens, while the latter involves a single repro-

ductive cell growing to many times its initial size and then undergoing several rounds of divi-

sion. However, reinterpreting birth rates of cells in groups as growth rates of unicells of

different sizes allows us to use our analysis to determine conditions under which such a mode

of fragmentation is more adaptive than, say, the more standard strategy of growing to twice

the initial size and then dividing in two (which for arbitrary sizes of offspring groups is equiva-

lent to our “equal binary fragmentation” mode). Our results suggest that palintomy is favored
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over binary fission (and any other fragmentation mode) under a wide range of demographic

scenarios (Fig 6C).

Many multicellular organisms are characterised by a life cycle whereby adults develop from

a single cell [39]. Passing through such a unicellular bottleneck is a requirement for sexual

reproduction based on syngamy, but life cycles with unicellular stages are also common in

asexual reproduction modes such as those used by multicellular algae and ciliates [40], and

colonial bacteria such as S. aureus [7]. If multicellularity evolved because of the benefits associ-

ated to group living, why do so many asexual multicellular organisms begin their life cycles as

solitary (and potentially vulnerable) cells? Explanatory hypotheses include the purge of delete-

rious mutations and the reduction of within-organism conflict [39, 41]. Our results make the

case for an alternative (and perhaps more parsimonious) explanation: often, a life cycle featur-

ing a unicellular bottleneck is the best way to guarantee that the “parent” group remains as

large as possible to reap maximum fecundity and/or survival advantages of group living.

Indeed, our theoretical results resonate with previous experimental work demonstrating that

single-cell bottlenecks can be adaptive simply because they constitute the life history strategy

that maximises reproductive success [42].

Previous theoretical work has explored questions related to the evolution of multicellularity

using matrix population models similar to the one proposed in this paper. In a seminal contri-

bution, Roze and Michod [43] explored the evolution of propagule size in the face of deleteri-

ous and selfish mutations. In their model, multicellular groups first grow to adult size and then

reproduce by splitting into equal size groups, so that fragmentation mode strategies can be

indexed by the size of the propagule. In our terminology, this refers to either “multiple fission”

or “multiple groups”. An important finding of Roze and Michod [43] is that, even if large

groups are advantageous, small propagules can be selected because they are more efficient at

eliminating detrimental mutations. We did not study the effects of mutations, but allowed for

general fitness landscapes and fragmentation modes, including cases of asymmetric binary

division (e.g., the unicellular propagule strategy) neglected by Roze and Michod [43]. Our

results indicate that modes of fragmentation involving single cells can lead to growth rate max-

imisation even when small propagule sizes divide less efficiently or die at a higher rate. In

particular, we have shown that if fragmentation is costly, a strategy consisting of a multiple

fragmentation mode with a propagule size of one (i.e., the small propagule strategy studied by

Roze and Michod [43]) can be adaptive for reasons other than the elimination of deleterious

mutations.

Closer to our work, Tarnita et al. [18] investigated the evolution of multicellular life cycles

via two alternative routes: “staying together” (ST, whereby offspring cells remain attached to

the parent) and “coming together” (CT, whereby cells of different origins aggregate in a

group). In particular, they studied the conditions under which a multicellular strategy that

produces groups via ST can outperform a solitary strategy whereby cells always separate after

division. The way they modelled group formation and analyzed the resulting population

dynamics (by means of biological reactions and matrix models) is closely related to our

approach. Indeed, their solitary strategy is our binary mode 1+1, while their ST strategy corre-

sponds to a particular kind of binary mixed fragmentation mode. However, the questions we

ask are different. Tarnita et al. [18] were concerned with the conditions under which (multicel-

lular) strategies that form groups can invade and replace (unicellular) strategies that remain

solitary. Contrastingly, we aimed to understand the optimal fragmentation mode out of the

vast space of fragmentation strategies comprising all possible deterministic and probabilistic

pathways by which complexes can stay together and split apart. A key finding is that, for any

fitness landscape and if the environment is constant, mixed fragmentation modes such as
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some of the ST strategies considered by Tarnita et al. [18] will be outperformed by at least one

pure fragmentation mode.

More recently, Rashidi et al. [20] developed a conceptual framework to study the competi-

tion of life cycles that involved five different life cycles defined by fragmentation patterns of

the form 1+1+. . .+1 and an associated genetic control. Their model, which explicitly considers

growing cells of different size, showed that depending on the fitness landscape, each of their

five life cycles could prevail. By extending the range of life cycles to encompass all possible frag-

mentation modes (albeit with less detailed attributes), we have shown that certain life cycles

will be suboptimal for any given fitness landscape.

In line with many studies in life history theory [32, 33], we made the simplifying assump-

tion that the phenotype consists of demographic traits (in our case, probabilities of fragment-

ing into given fragmentation patterns) linked by trade-offs which interact to determine fitness

(growth rate). This allowed us to predict the optimal phenotype at equilibrium at the expense

of leaving unspecified whether, due to genetic constraints, such an equilibrium will be possible

in an actual biological system. The question that inevitably arises is whether, given a presump-

tive genotype-phenotype mapping, it is possible for evolution to fine tune life cycles with

group-level properties (such as specific fragmentation patterns) so that optimal fragmentation

modes will be obtained as the endpoint of an evolutionary process. While a complete answer

requires a more sophisticated analysis, we see no conceptual obstruction preventing seemingly

arbitrary fragmentation modes to evolve. Firstly, genotype-phenotype maps of existing organ-

isms can be complex and offer opportunity for adaptation, involving important qualitative

behavioral changes [44–46]. Secondly, small genotypic changes can produce major phenotypic

changes. For instance, Hammerschmidt et al. [3] observed the emergence of collective-level

properties in a previously unicellular organism that was caused by a small number of muta-

tions. Thirdly, even if a current set of genes cannot provide an appropriate template for given

phenotypic traits, new genes can emerge de novo [47–51]. Finally, theoretical arguments sug-

gest that genetic constraints can be effectively overcome in phenotypic evolution provided

there is a rich variety of new mutant alleles [52]. We thus think that, both in the field and in

the laboratory, multicellular organisms will be able to evolve a phenotype close to the optimal

fragmentation mode in the (very) long run.
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47. Tautz D, Domazet-Lošo T. The evolutionary origin of orphan genes. Nature Reviews Genetics. 2011;

12(10):692–702. https://doi.org/10.1038/nrg3053 PMID: 21878963

48. Donoghue MT, Keshavaiah C, Swamidatta SH, Spillane C. Evolutionary origins of Brassicaceae spe-

cific genes in Arabidopsis thaliana. BMC Evolutionary Biology. 2011; 11(1):47. https://doi.org/10.1186/

1471-2148-11-47 PMID: 21332978

Fragmentation modes and the evolution of life cycles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005860 November 22, 2017 19 / 20

https://doi.org/10.2307/2044180
https://doi.org/10.1002/bies.20197
http://www.ncbi.nlm.nih.gov/pubmed/15714559
https://doi.org/10.1098/rsif.2011.0102
https://doi.org/10.1038/ncomms1410
http://www.ncbi.nlm.nih.gov/pubmed/21772268
https://doi.org/10.1016/j.tpb.2016.09.003
http://www.ncbi.nlm.nih.gov/pubmed/27664440
https://doi.org/10.1007/BF00141070
https://doi.org/10.1038/250704b0
https://doi.org/10.1038/250704b0
https://doi.org/10.2307/2409140
https://doi.org/10.2307/2409140
http://www.ncbi.nlm.nih.gov/pubmed/28568756
https://doi.org/10.1016/0022-5193(66)90188-3
http://www.ncbi.nlm.nih.gov/pubmed/6015423
https://doi.org/10.1038/nature08504
http://www.ncbi.nlm.nih.gov/pubmed/19890329
https://doi.org/10.1073/pnas.0701489104
https://doi.org/10.1073/pnas.0701489104
https://doi.org/10.1016/S0169-5347(97)01313-X
https://doi.org/10.1016/S0169-5347(97)01313-X
https://doi.org/10.1111/brv.12031
http://www.ncbi.nlm.nih.gov/pubmed/23448295
https://doi.org/10.1038/ncomms3742
http://www.ncbi.nlm.nih.gov/pubmed/24193369
https://doi.org/10.1086/323590
http://www.ncbi.nlm.nih.gov/pubmed/18707357
https://doi.org/10.1038/27900
http://www.ncbi.nlm.nih.gov/pubmed/9665128
https://doi.org/10.1186/1471-2148-1-10
http://www.ncbi.nlm.nih.gov/pubmed/11734058
https://doi.org/10.1038/nature01906
http://www.ncbi.nlm.nih.gov/pubmed/12955142
https://doi.org/10.1038/nrg3053
http://www.ncbi.nlm.nih.gov/pubmed/21878963
https://doi.org/10.1186/1471-2148-11-47
https://doi.org/10.1186/1471-2148-11-47
http://www.ncbi.nlm.nih.gov/pubmed/21332978
https://doi.org/10.1371/journal.pcbi.1005860


49. Sabath N, Wagner A, Karlin D. Evolution of viral proteins originated de novo by overprinting. Molecular

biology and evolution. 2012; 29(12):3767–3780. https://doi.org/10.1093/molbev/mss179 PMID:

22821011

50. Schlotterer C. Genes from scratch–the evolutionary fate of de novo genes. Trends in Genetics. 2015;

31(4):215–219. https://doi.org/10.1016/j.tig.2015.02.007 PMID: 25773713

51. Farr AD, Remigi P, Rainey PB. Adaptive evolution by spontaneous domain fusion and protein relocali-

sation. Nature Ecology and Evolution. 2017; 1:1562–1568. https://doi.org/10.1038/s41559-017-0283-7

52. Hammerstein P. Darwinian adaptation, population genetics and the streetcar theory of evolution. Jour-

nal of Mathematical Biology. 1996; 34(5-6):511–532. https://doi.org/10.1007/BF02409748 PMID:

8691083

Fragmentation modes and the evolution of life cycles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005860 November 22, 2017 20 / 20

https://doi.org/10.1093/molbev/mss179
http://www.ncbi.nlm.nih.gov/pubmed/22821011
https://doi.org/10.1016/j.tig.2015.02.007
http://www.ncbi.nlm.nih.gov/pubmed/25773713
https://doi.org/10.1038/s41559-017-0283-7
https://doi.org/10.1007/BF02409748
http://www.ncbi.nlm.nih.gov/pubmed/8691083
https://doi.org/10.1371/journal.pcbi.1005860


Supporting information: Fragmentation modes and the

evolution of life cycles

Yuriy Pichugin1*, Jorge Peña1,2,†, Paul B. Rainey1,3,4, Arne Traulsen1

1 Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön,

Germany

2 GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine
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A Mixed fragmentation modes

A mixed fragmentation mode assigns a probability qκ to each possible fragmentation pattern (or par-

tition) κ ` 2, . . . , κ ` n, where n is the maximum group size. Such probabilities satisfy
∑

κ`j qκ = 1

for j = 2, . . . , n, i.e., when growing from size j− 1 to j one of the partitions κ ` j (including staying

together without splitting, κ = j) will certainly occur. Additionally, we impose qn = 0 so that, when

growing from size n− 1 to size n, a group can no longer stay together and will necessarily fragment.

It follows that a given life cycle or fragmentation mode can be represented by a set of vectors of the

form

q =

(q2, q1+1︸ ︷︷ ︸
κ`2

), (q3, q2+1, q1+1+1︸ ︷︷ ︸
κ`3

), . . . , (qn, qn−1+1, qn−2+2, . . . , q1+1+...+1︸ ︷︷ ︸
κ`n

)

 . (1)

Pure life cycles are a particular case where splitting probabilities qκ are either zero or one, so that only

one fragmentation pattern with more than one offspring group occurs.

A mixed life cycle can be understood as a set of reactions. A number n − 1 of reactions, of the

type

Xi
di−→ 0 (2)

2



model the death of groups; these are independent of the fragmentation mode. An additional number

of reactions, one per each non-zero element of the vector q, models the birth of units and the growth

or fragmentation of groups. These reactions are of the type

Xi
ibiqκ−−−→

i+1∑
j=1

πj(κ)Xj , (3)

whereby a group of size i turns into a group of size i + 1 at rate ibj , and then instantly divides with

probability qκ into offspring groups in a way described by fragmentation pattern κ ` i+1, where parts

equal to ` appear a number π`(κ) of times. These reactions depend on the life cycle, which specifies

the probabilities of fragmentation patterns. For instance, the reaction

X3
3b3q2+1+1−−−−−−→ X2 + 2X1,

stipulates that groups of size 3, which grow to size 4 at rate 3b3, will split with probability q2+1+1 into

one group of size 2 and two groups of size 1. The growth of a group without fragmentation is also

incorporated in the set of reactions given by (3). For instance, the reaction

X3
3b3q4−−−→ X4,

stipulates that groups of size 3, which grow to size 4 at rate 3b3, will not split with probability q4.

The sets of reactions (2) and (3) give rise to the system of differential equations

ẋi =

n−1∑
j=1

∑
κ`j+1

qκπi(κ)jbjxj − ibixi − dixi, i = 1, 2, . . . , n− 1, (4)

where xi denotes the abundance of groups of size i. This linear system can be represented in matrix

form as

ẋ = Ax, (5)

where x = (x1, x2, . . . , xn−1) is the vector of abundances of the groups of different size and A is a

(n− 1)× (n− 1) matrix with elements given by

ai,j = jbj
∑
κ`j+1

qκπi(κ)− δi,j (ibi + di) , (6)

where δi,j is the Kronecker delta. Since πi(κ) = 0 for κ ` j+1 and i > j+1 (a partition of a number

has no parts larger than the number), the entries of A below the subdiagonal are zero. As an example,
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consider n = 4. The projection matrix for this case is given by

A =


b1
∑
κ`2

qκπ1(κ)− b1 − d1 2b2
∑
κ`3

qκπ1(κ) 3b3
∑
κ`4

qκπ1(κ)

b1
∑
κ`2

qκπ2(κ) 2b2
∑
κ`3

qκπ2(κ)− 2b2 − d2 3b3
∑
κ`4

qκπ2(κ)

0 2b2
∑
κ`3

qκπ3(κ) 3b3
∑
κ`4

qκπ3(κ)− 3b3 − d3

 . (7)

B Mixed fragmentation modes are dominated

For any fitness landscapes, mixed fragmentation modes are dominated by at least one pure life cycle.

In other words, the optimal life cycle is pure.

To prove this result, consider the set of partitions κ ` j for a given j, fix the probabilities of

fragmentation patterns ν ` i 6= j to arbitrary values, and focus attention on the function

λj1 : Sj → R,

mapping probability distributions in the ζj-simplex Sj ⊂ Rζj (specifying the probabilities of all

partitions κ ` j) to the dominant eigenvalue λj1 of the associated projection matrix A. Our goal is to

show that, for any j, λj1 is a quasiconvex function, i.e., that

λj1(ηx1 + (1− η)x2) ≤ max
{
λj1(x1), λ

j
1(x2)

}
holds for all x1,x2 ∈ Sj and η ∈ [0, 1]. Quasiconvexity of λj1 implies that λj1 achieves its maximum

at an extreme point of Sj , i.e., at a probability distribution that puts all of its mass in a single frag-

mentation pattern. Quasiconvexity of λj1 for all j then implies that the maximum growth rate λ1 is

achieved by a pure fragmentation mode, and that mixed fragmentation modes are dominated.

To show that λj1 is quasiconvex, we restrict the function to an arbitrary line and check quasicon-

vexity of the resulting scalar function [1, p. 99]. More precisely, we aim to show that the function

f(t) = λj1 (u+ tv) ,

is quasiconvex in t for any u ∈ Sj and v ∈ Rζj such that u+ tv ∈ Sj . We hence need to verify that

f(τt1 + (1− τ)t2) ≤ max {f(t1), f(t2)} (8)

holds for τ ∈ [0, 1].
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To show this, note that the function f(t) = λj1(u + tv) is given implicitly by the largest root of

the characteristic polynomial

p(λ) = det (A− λI) , (9)

where the probabilities of fragmentation specified by u + tv appear in the (j − 1)-th column of the

projection matrix A (see Eqs. (6) and (7)).

The right hand side of Eq. (9) can be written using a Laplace expansion along the (j−1)-th column

of A− λI:

det(A− λI) =
n−1∑
i=0

(−1)i+j−1(ai,j−1 − δi,j−1λ)Mi,j−1, (10)

where δi,j−1 is the Kronecker delta and Mi,j−1 is the (i, j − 1) minor of A, i.e., the determinant of

the submatrix obtained from A by deleting the i-th row and (j − 1)-th column. Each minor Mi,j−1

is independent of t because the only entries of A that depend on t appear in the (j − 1)-th column.

Moreover, each entry ai,j−1 is either zero or a linear function of t. Hence, p(λ) is a polynomial on λ

with coefficients that are linear in t, i.e., of the form

p(λ) =
n−1∑
k=0

(αk + βkt)λ
k, (11)

for some αk, βk. Moreover, since the leading coefficient must be (−1)n−1 (the matrix A is (n− 1)×

(n− 1)), it follows that αn−1 = (−1)n−1 and βn−1 = 0.

Denote by pτ (λ), p1(λ), and p2(λ) the characteristic polynomials corresponding to, respectively,

the probability distributions given by u+ [τt1 + (1− τ)t2]v, u+ t1v, and u+ t2v. From Eq. (11),

these are given by

pτ (λ) =

n−1∑
k=0

(αk + βk [τt1 + (1− τ)t2])λk =
n−1∑
k=0

αkλ
k + [τt1 + (1− τ)t2]

n−1∑
k=0

βkλ
k, (12a)

p1(λ) =

n−1∑
k=0

(αk + βkt1)λ
k =

n−1∑
k=0

αkλ
k + t1

n−1∑
k=0

βkλ
k, (12b)

p2(λ) =
n−1∑
k=0

(αk + βkt2)λ
k =

n−1∑
k=0

αkλ
k + t2

n−1∑
k=0

βkλ
k. (12c)

Subtracting Eq. (12b) from Eq. (12a), and Eq. (12c) from Eq. (12a), we can write

pτ (λ)− p1(λ) = (t2 − t1)(1− τ)
n−1∑
k=0

βkλ
k,

pτ (λ)− p2(λ) = (t1 − t2)τ
n−1∑
k=0

βkλ
k.
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Note that the signs of these differences are always different, i.e., either (i) pτ (λ) − p1(λ) ≥ 0 and

pτ (λ) − p2(λ) ≤ 0, or (ii) pτ (λ) − p1(λ) ≤ 0 and pτ (λ) − p2(λ) ≥ 0. In the first case, we have

p1(λ) ≤ pτ (λ) ≤ p2(λ) and in the second we have p2(λ) ≤ pτ (λ) ≤ p1(λ), i.e., for each λ, pτ (λ)

lies between p1(λ) and p2(λ), or, equivalently

pτ (λ) ≤ max {p1(λ), p2(λ)} , (13)

for all λ. Since λj1 is the largest root of p(λ), and since pτ (λ), p1(λ), and p2(λ) all have the same

sign in the limit when λ tends to infinity (their leading coefficients are all equal to αn−1 = (−1)n−1),

condition (13) implies condition (8), thus proving our claim. See Fig. A for an illustration.

C Mixing between 1+1 and 2+1 is dominated

To show that the life cycle mixing between fragmentation modes 1+1 and 2+1 with probability q

represented in vector form as

q = {(q2, q1+1), (q3, q2+1, q1+1+1)} = {(q, 1− q), (0, 1, 0)} (14)

is dominated, consider its growth rate λq1 as a function of q, as given by the solution of characteristic

equation

λq1 =
b1(1− 2q)− (d1 + d2) +

√
(d1 + d2 − (1− 2q)b1)2 + 4b1(2qb2 + (1− 2q)d2)

2
.

We have λq1(0) = λ1+1
1 and λq1(1) = λ2+1

1 . A sufficient condition for q to be dominated by either 1+1

or 2+1 is then that λq1(q) is monotonic in q. To show that this is the case, note that the derivative of λq1

with respect to q is given by

dλq1
dq

= b1

(
−1 + (2q − 1)b1 + 2b2 + d1 − d2√

((2q − 1)b1 + d1 + d2)2 + 4b1(2qb2 − (2q − 1)d2)− 4d1d2

)
,

and that such expression is equal to zero if and only if

b1 − b2 = d1 − d2 (15)

which is independent of q. It follows that λq1 is either nonincreasing or nondecreasing in q, and hence

that it attains its maximum at either q = 0, q = 1, or (when (15) is satisfied) at any q ∈ [0, 1]. Hence,

q is dominated by either 1+1 or 2+1.
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Figure A: Population growth rate λ1 is quasiconvex. Consider two fragmentation modes q1 and q2 which

differ only in the probabilities of fragmentation patterns at a single size j. Then, for any 0 ≤ τ ≤ 1 and

corresponding fragmentation mode qτ = τq1+(1− τ)q2, the polynomials p(λ) given by Eq. (9) satisfy either

p1(λ) ≤ pτ (λ) ≤ p2(λ) or p2(λ) ≤ pτ (λ) ≤ p1(λ). Thus, qτ leads to a lower growth rate than either q1

or q2, i.e., either λτ1 ≤ λ11, or λτ1 ≤ λ21 holds. Here, j = 3, q1 =
{
(0.9, 0.1), (0.5, 0.5, 0), (0, 0, 0, 1, 0)

}
,

q2 =
{
(0.9, 0.1), (0.5, 0, 0.5), (0, 0, 0, 1, 0)

}
, and τ = 0.6. The fitness landscape is given by bi = 1/i, di = 0

for all i.

7



D Characteristic equation of a pure fragmentation mode

Consider the pure fragmentation mode κ ` `, whereby groups grow up to size ` and then fragment

according to fragmentation pattern κ. The projection matrix is a (`− 1)× (`− 1) matrix of the form

A =



−b1 − d1 0 · · · 0 (`− 1)b`−1π1(κ)

b1 −2b2 − d2 0
... (`− 1)b`−1π2(κ)

0 2b2 −3b3 − d3 0 (`− 1)b`−1π3(κ)

0 0
. . . . . .

...

0 0 · · · (`− 2)b`−2 (`− 1)b`−1 (π`−1(κ)− 1)− d`−1


.

The population growth rate is given by the leading eigenvalue λ1 of A, i.e., the largest solution of

the characteristic equation

det (A− λI) = 0. (16)

By using a Laplace expansion along the last column of A − λI, we can rewrite the left hand side of

the above expression (i.e., the characteristic polynomial of A) as

det (A− λI) =
`−2∑
i=1

(−1)i+`−1(`− 1)b`−1πi(κ)Mi,`−1 (17)

+ (−1)2(`−1) [(`− 1)b`−1π`−1(κ)− (`− 1)b`−1 − d`−1 − λ]M`−1,`−1

=
`−1∑
i=1

(−1)i+`−1(`− 1)b`−1πi(κ)Mi,`−1 − [(`− 1)b`−1 + d`−1 + λ]M`−1,`−1 (18)

where Mi,`−1 is the (i, ` − 1)-th minor of A − λI. For all i = 1, . . . , ` − 1, the minor Mi,`−1 is

the determinant of a block diagonal matrix, and hence equal to the product of the determinants of the

diagonal blocks. Moreover, each diagonal block is either a lower triangular or an upper triangular

matrix, whose determinant is given by the product of the elements in their main diagonals. We can

then write

Mi,`−1 =

i−1∏
j=1

(−jbj − dj − λ)
`−2∏
j=i

jbj . (19)
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Substituting Eq. (19) into Eq. (18) and simplifying, we obtain

det (A− λI) = (−1)`−2
`−1∑
i=1

(`− 1)b`−1πi(κ)

i−1∏
j=1

(jbj + dj + λ)

`−2∏
j=i

jbj

− (−1)`−2 ((`− 1)b`−1 + d`−1 + λ)

`−2∏
j=1

(jbj + dj + λ)

= (−1)`−2
`−1∏
j=1

jbj

`−1∑
i=1

πi(κ)
i−1∏
j=1

(
1 +

dj + λ

jbj

)− `−1∏
j=1

(
1 +

dj + λ

jbj

) .

Replacing this expression into the characteristic equation (16), dividing both sides by (−1)`−1
∏`−1
j=1 jbj ,

and simplifying, we finally obtain that the characteristic equation (16) can be written as

F`(λ)−
`−1∑
i=1

πi(κ)Fi(λ) = 0, (20)

where

Fi(λ) =

i−1∏
j=1

(
1 +

dj + λ

jbj

)
. (21)

Note that the following two transformations:

d→ d− r, λ→ λ+ r, r ≤ min(d),

and

d→ sd, b→ sb, λ→ sλ, s > 0.

preserve the solution of Eq. (20) This allows us to set b1 = 1 and min(d) = 0 without loss of

generality.

E Fragmentation modes are dominated by binary splitting

We can show that, for any fitness landscape, binary fragmentation achieves a larger growth rate than

splitting into more than two offspring groups. To prove this, consider (i) positive integers m, j, and k

such thatm > j+k, (ii) an arbitrary partition τ ` m−j−k, and (iii) the following three fragmentation

modes:

1. κ1 = j + k + τ ` m, whereby a complex of size m fragments into one complex of size j, one

complex of size k, and a number of offspring complexes given by partition τ .
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2. κ2 = (j+ k)+ τ ` m, whereby a complex of size m fragments into one complex of size j+ k,

and a number of offspring complexes given by partition τ .

3. κ3 = j + k ` (j + k), a binary splitting fragmentation mode whereby a complex of size j + k

fragments into two offspring complexes: one of size j, and one of size k.

Fragmentation mode κ1 leads to a number of offspring groups equal to

n1 = 2 +

m−j−k∑
`=1

π`(τ),

fragmentation mode κ2 to a number of offspring groups equal to

n2 = 1 +

m−j−k∑
`=1

π`(τ) = n1 − 1,

and fragmentation mode κ3 to a number of offspring groups equal to two. Denoting by λi1 the growth

rate of fragmentation mode κi, we can show that, for any fitness landscape, either λ11 ≤ λ21 or λ11 ≤ λ31

holds, i.e., a fragmentation mode with more than two parts is dominated by either a fragmentation

mode with one part less or by a fragmentation mode with exactly two parts. By induction, this implies

that the optimal life cycle is always one within the class of binary fragmentation modes.

To prove that either λ11 ≤ λ21 or λ11 ≤ λ31 holds, let us denote by pi(λ) the characteristic polynomial

associated to mode κi, as given by the left hand side of Eq. (20) after the replacement κ = κi. The

growth rate λi1 of mode κi is hence the largest root of pi(λ). The polynomials p1(λ), p2(λ), and p3(λ)

are then given by

p1(λ) = Fm(λ)−
m−j−k∑
`=1

π`(τ)F`(λ)− Fj(λ)− Fk(λ), (22a)

p2(λ) = Fm(λ)−
m−j−k∑
`=1

π`(τ)F`(λ)− Fj+k(λ), (22b)

p3(λ) = Fj+k(λ)− Fj(λ)− Fk(λ). (22c)

These polynomials satisfy the following two properties. First,

lim
λ→∞

pi(λ) =∞, (23)

as the leading coefficient of the left hand side of Eq. (20) is always positive. Second, we can write

p1(λ) = p2(λ) + p3(λ). (24)

10



Figure B: The population growth rate induced by a fragmentation mode with more than two offspring

groups is dominated. Consider the characteristic polynomials pi(λ1) for partitions κ1 = 2+1+1, κ2 = 3+1

and κ3 = 2 + 1. Left: Fitness landscape b = (1, 1, 1.4), d = (0, 0, 0). Since p2(λ11) < 0, κ1 is dominated

by κ2 (λ11 < λ21 holds). Center: Fitness landscape b = (1, 2.6 −
√
1.3, 1.4), d = (0, 0, 0). Since p1(λ11) =

p1(λ
2
1) = p1(λ

3
1), κ1 is weakly dominated by κ2 (λ11 ≤ λ21 holds). Right: Fitness landscape b = (1, 1.9, 1.4),

d = (0, 0, 0). Since p3(λ11) < 0, κ1 is dominated by κ3 (λ11 < λ31 holds).

Now, evaluating Eq. (24) at λ11, and since p1(λ11) = 0, it follows that p2(λ11) = −p3(λ11). Hence, only

one of the following three scenarios is satisfied: (i) p2(λ11) < 0 < p3(λ
1
1), (ii) p2(λ11) = p3(λ

1
1) = 0, or

(iii) p2(λ11) > 0 > p3(λ
1
1). If p2(λ11) < 0 < p3(λ

1
1), and by Eq. (23) and Bolzano’s theorem, λ11 ≤ λ21

holds. Likewise, if p2(λ11) > 0 > p3(λ
1
1), then λ11 ≤ λ31 holds. Finally, if p2(λ11) = p3(λ

1
1) = 0,

then both λ11 ≤ λ21 and λ11 ≤ λ31 hold. See Fig. B for a graphical illustration of these arguments. We

conclude that either λ11 ≤ λ21 or λ11 ≤ λ31 must hold, which proves our result.

F Optimality maps for n = 4

For n = 4 there are four pure fragmentation modes: 1+1, 2+1, 2+2, and 3+1. From Eq. (20), their

characteristic polynomials are respectively given by

p1+1(λ) = F2(λ)− 2F1(λ), (25a)

p2+1(λ) = F3(λ)− F2(λ)− F1(λ), (25b)

p2+2(λ) = F4(λ)− 2F2(λ), (25c)

p3+1(λ) = F4(λ)− F3(λ)− F1(λ). (25d)

The optimality maps shown in Fig. 3 of the main text were obtained by comparing the largest
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root of these characteristic polynomials, which we computed numerically. For fecundity landscapes,

we tested fitness landscapes of the form {b,d} = {(1, b2, b3), (0, 0, 0)} with b2 and b3 taken from a

rectangular grid of size 300 by 300 with b2 ∈ [0, 5] and b3 ∈ [0, 5]. For viability landscapes, we tested

fitness landscapes of the form {b,d} = {(1, 1, 1), (5, d2, d3)}with d2 and d3 taken from a rectangular

grid of size 300 by 300 with d2 ∈ [0, 10] and d3 ∈ [0, 10].

The boundaries between areas of optimality can still be computed analytically. They are given by

the fitness landscapes at which two fragmentation modes have the same population growth rate.

The following are the boundaries between areas of optimality under fecundity fitness landscape

(assuming b1 = 1 for simplicity):

• Between fragmentation modes 1+1 and 2+1: b2 = 1, b3 < 1.

• Between fragmentation modes 1+1 and 3+1: b3 = 2
3

(
1 + 1

2b2

)
, b2 < 1.

• Between fragmentation modes 2+1 and 2+2: b3 =
ζ(2b2+ζ)
3(2b2−ζ) , where ζ =

√
1+8b2−1

2 , and b2 > 1.

• Between fragmentation modes 3+1 and 2+2: b3 = 2
3b2 (2b2 − 1)

(
2− 1

2b2

)
and b2 > 1

The following are the boundaries between areas of optimality under viability fitness landscape

(assuming d1 = 0 for simplicity):

• Between fragmentation modes 1+1 and 2+1: d2 = 0, d3 > 0.

• Between fragmentation modes 1+1 and 3+1: d3 = 3
d2+3 − 1, d2 > 0.

• Between fragmentation modes 2+1 and 2+2: d3 = 32−d2−ζ
2+d2+ζ

− ζ, where ζ =

√
d22−2d2+9−1−d2

2 ,

and d2 < 0.

• Between fragmentation modes 3+1 and 2+2: d3 = 32−d2−ζ
2+d2+ζ

− ζ, where ζ =

√
d22−6d2+1+1−d2

2

and d2 < 0

G Costly fragmentation

For costly fragmentation, some cells are lost upon the fragmentation event. In this case the biological

reactions are still given by Eqs. (2) and (3). However, under costly fragmentation the sum of sizes of

offspring groups is smaller than the size of the parent group. Therefore, in Eq. (3), κ is a partition
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of i′ ≤ i + 1 (and not strictly of i + 1 as it was under costless fragmentation). Indeed, i′ = i + 1

in the case of trivial partitions with one part (when a group grows without splitting), but i′ < i + 1

for nontrivial partitions with two or more parts (where the group grows in size by one cell and then

splits). In this latter case, i′ = i − π + 2 (where π is the number of offspring groups) for the case of

proportional costs, and i′ = i for the case of fixed costs.

To illustrate the difference in the available sets of partitions for each of the three scenarios we

investigate (costless fragmentation, fragmentation with proportional cost, fragmentation with fixed

cost), consider the following possible reactions for a 4-cell group growing into a 5-cell group. For

costless fragmentation, we have

X4
4b4q5−−−→ X5 5 ` 5 (no cell is lost),

X4
4b4q4+1−−−−−→ X4 +X1 4 + 1 ` 5 (no cell is lost),

X4
4b4q3+2−−−−−→ X3 +X2 3 + 2 ` 5 (no cell is lost),

X4
4b4q3+1+1−−−−−−→ X3 + 2X1 3 + 1 + 1 ` 5 (no cell is lost),

X4
4b4q2+2+1−−−−−−→ 2X2 +X1 2 + 2 + 1 ` 5 (no cell is lost),

X4
4b4q2+1+1+1−−−−−−−−→ X2 + 3X1 2 + 1 + 1 + 1 ` 5 (no cell is lost),

X4
4b4q1+1+1+1+1−−−−−−−−−→ 5X1 1 + 1 + 1 + 1 + 1 ` 5 (no cell is lost).

For fragmentation with fixed cost, we have

X4
4b4q5−−−→ X5 5 ` 5 (no cell is lost),

X4
4b4q3+1−−−−−→ X3 +X1 3 + 1 ` 4 (1 cell is lost),

X4
4b4q2+2−−−−−→ 2X2 2 + 2 ` 4 (1 cell is lost),

X4
4b4q2+1+1−−−−−−→ X2 + 2X1 2 + 1 + 1 ` 4 (1 cell is lost),

X4
4b4q1+1+1+1−−−−−−−−→ 4X1 1 + 1 + 1 + 1 ` 4 (1 cell is lost).

Finally, for fragmentation with proportional cost, we have

X4
4b4q5−−−→ X5 5 ` 5 (no cell is lost),

X4
4b4q3+1−−−−−→ X3 +X1 3 + 1 ` 4 (1 cell is lost),

X4
4b4q2+2−−−−−→ 2X2 2 + 2 ` 4 (1 cell is lost),

X4
4b4q1+1+1−−−−−−→ 3X1 1 + 1 + 1 ` 3 (2 cells are lost).
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The combined probability of all outcomes of aggregate growth must be equal to one. In the case

of costless fragmentation, this condition has been given by
∑

κ`i+1 qκ = 1 for i = 1, . . . , n − 1.

For costly fragmentation this condition changes to
∑

κ`i′ qκ = 1 for i = 1, . . . , n − 1, with i′ as

defined above. The expressions for the system of differential equations and the projection matrix for

general mixed strategies (Eqs. (4) and (7)) are changed accordingly. For pure fragmentation modes,

the projection matrix given in the main text and the characteristic equation given in Eq. (20) remain

valid, but κ is no longer a partition of i+ 1 but of i′ as defined above.

H With proportional costs, fragmentation modes are dominated by bi-

nary splitting

For fragmentation with proportional costs, a group fragmenting into π offspring groups incurs a cost

of π − 1 cells. In this case, similarly to the case for costless fragmentation, nonbinary fragmentation

modes are dominated by binary fragmentation modes. To prove this, consider (i) positive integers

m, j, and k such that m > j + k + 4, (ii) an arbitrary partition τ with π ≥ 2 parts such that

τ ` m− j − k − π − 2, and (iii) the following three fragmentation modes:

1. κ1 = j+ k+ τ ` m−π− 1, whereby a complex of size m fragments into one complex of size

j, one complex of size k, and π complexes given by partition τ , and π + 1 cells die.

2. κ2 = (j + k + 1) + τ ` m − π, whereby a complex of size m fragments into one complex of

size j + k + 1 and π complexes given by partition τ , and π cells die.

3. κ3 = j + k ` (j + k), a binary fragmentation mode whereby a complex of size j + k + 1

fragments into two offspring complexes (one of size j and one of size k), and one cell dies.

Note that fragmentation mode κ1 leads to π+2 offspring groups, fragmentation mode κ2 leads to π+1

offspring groups, and fragmentation mode κ3 leads to a number of offspring groups equal to two. The

rest of the proof is analogous to the one given in Appendix E for the case of costless fragmentation

and will be omitted.
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